Skip to main content
Log in

A new type of hybrid synchronization between arbitrary hyperchaotic maps

International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, a new approach is proposed to investigate new type of hybrid chaos synchronization in discrete-time hyperchaotic dynamical systems. We present, based on stability theory of linear discrete-time systems and Lyapunov stability theory, a general control scheme to study the co-existence of inverse projective synchronization, inverse generalized synchronization and Q-S synchronization between arbitrary 3D hyperchaotic maps. Numerical examples and computer simulations are used to validate the theoretical results derived in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Stoop R, Meier PF (1988) Evaluation of Lyapunov exponents and scaling functions from time series. J Opt Soc Am B 5:1037

    Article  Google Scholar 

  2. Eduardo L, Ruiz-Herrera A (2012) Chaos in discrete structured population models. SIAM J Appl Dyn Syst 11:1200–1214

    Article  MATH  MathSciNet  Google Scholar 

  3. Baier RG, Sahles S (1994) Hyperchaos and chaotic hierarchy in low-dimensional chemical systems. J Chem Phys 100:8907–8911

    Article  Google Scholar 

  4. Zhang WB (2006) Discrete dynamical systems, bifurcations, and chaos in economics. Elsevier, Boston

    Google Scholar 

  5. Baier G, Klein M (1990) Maximum hyperchaos in generalized Hénon maps. Phys Lett A 51:281–284

    Article  Google Scholar 

  6. Hitzl DL, Zele F (1985) An exploration of the Hénon quadratic map. Physica D 14:305–326

    Article  MATH  MathSciNet  Google Scholar 

  7. Stefanski K (1998) Modelling chaos and hyperchaos with 3D maps. Chaos Solitons Fractals 9:83–93

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang XY (2003) Chaos in complex nonlinear systems. Publishing House of Electronics Industry, Beijing

    Google Scholar 

  9. Itoh M, Yang T, Chua LO (2001) Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int J Bifurc Chaos 11:551

    Article  MATH  MathSciNet  Google Scholar 

  10. Grassi G, Miller DA (2002) Theory and experimental realization of observer-based discrete-time hyperchaos synchronization. IEEE Trans Circuits Syst I Fundam Theory Appl 49:373–378

    Article  Google Scholar 

  11. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157

    Article  MATH  MathSciNet  Google Scholar 

  12. Matsumoto T, Chua LO, Kobayashi K (1986) Hyperchaos: laboratory experiment and numerical confirmation. IEEE Trans Circuits Syst 33:1143–1147

    Article  MathSciNet  Google Scholar 

  13. Stoop R, Peinke J, Parisi J, Röhricht B, Hübener RP (1989) A p-Ge semiconductor experiment showing chaos and hyperchaos. Physica D 35:425–4352

    Article  Google Scholar 

  14. Vicente R, Dauden J, Colet P, Toral R (2005) Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J Quantum Electron 41:541–548

    Article  Google Scholar 

  15. Eiswirth M, Kruel Th-M, Ertl G, Schneider FW (1992) Hyperchaos in a chemical reaction. Chem Phys Lett 193:305

    Article  Google Scholar 

  16. Mohamed F, Haroun T (2015) Real-time image encryption using a low-complexity discrete 3D dual chaotic cipher. Nonlinear Dyn 82:1523–1535

    Article  MathSciNet  Google Scholar 

  17. Boriga R, Dăscălescu AC, Priescu I (2014) A new hyperchaotic map and its application in an image encryption scheme. Signal Process Image Commun 29:887–901

    Article  Google Scholar 

  18. Akhavan A, Samsudin A, Akhshani A (2013) A novel parallel hash function based on 3D chaotic map. EURASIP J Adv Signal Process 2013:126. doi:10.1186/1687-6180-2013-126

  19. González IEY, Hernandez CC (2013) Double hyperchaotic encryption for security in biometric systems. Nonlinear Dyn Syst Theory 13:55–68

    MATH  MathSciNet  Google Scholar 

  20. Filali RL, Benrejeb M, Borne P (2014) On observer-based secure communication design using discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19:1424–1432

    Article  MathSciNet  Google Scholar 

  21. Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29:1185–1196

    Article  MathSciNet  Google Scholar 

  22. Wang XZ (2015) Learning from big data with uncertainty—editorial. J Intell Fuzzy Syst 28:2329–2330

    Article  MathSciNet  Google Scholar 

  23. He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci (in press). doi:10.1016/j.ins.2016.01.037

  24. Ashfaq RAR, Wang XZ, Huang JZX, Abbas H, He YL (2016) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci (in press). doi:10.1016/j.ins.2016.04.019

  25. Bustos AYA, Hernández CC, López Gutiérrez RM, Posadas Castillo YC (2008) Synchronization of different hyperchaotic maps for encryption. Nonlinear Dyn Syst Theory 8:221–236

    MATH  MathSciNet  Google Scholar 

  26. Bustos AYA, Hernández CC (2009) Synchronization of discrete-time hyperchaotic systems: an application in communications. Chaos Solitons Fractals 41:1301–1310

    Article  MATH  MathSciNet  Google Scholar 

  27. Hernández CC, Lopez Gutierrez RM, Bustos AYA, Posadas Castillo YC (2010) Communicating encrypted information based on synchronized hyperchaotic maps. Commun Nonlinear Sci Numer Simul 11:337–349

    Google Scholar 

  28. Ouannas A (2014) Some synchronization criteria for N-dimensional chaotic dynamical systems in discrete-time. J Adv Res Appl Math 6:1–9

    Article  MathSciNet  Google Scholar 

  29. Filali RL, Hammami S, Benrejeb M, Borne P (2012) On synchronization, anti-synchronization and hybrid synchronization of 3D discrete generalized Hénon map. Nonlinear Dyn Syst Theory 12:81–95

    MATH  MathSciNet  Google Scholar 

  30. Grassi G, Miller DA (2007) Projective synchronization via a linear observer: application to time-delay, continuous-time and discrete-time systems. Int J Bifur Chaos 17:1337–1342

    Article  MATH  MathSciNet  Google Scholar 

  31. Jin Y, Xin L, Chen Y (2008) Function projective synchronization of discrete-time chaotic and hyperchaotic systems using backstepping method. Commun Theor Phys 50:111–116

    Article  Google Scholar 

  32. Li Y, Chen Y, Li B (2009) Adaptive control and function projective synchronization in 2D discrete-time chaotic systems. Commun Theor Phys 51:270–278

    Article  MATH  Google Scholar 

  33. Li Y, Chen Y, Li B (2009) Adaptive function projective synchronization of discrete-time chaotic systems. Chin Phys Lett 26:040504-4

  34. Li Y, Tianyan D (2010) Adaptive control for anticipated function projective synchronization of 2D discrete-time chaotic systems with uncertain parameters. J Uncertain Syst 4:195–205

    Google Scholar 

  35. Hong-Li An, Yong Chen (2009) The function cascade synchronization scheme for discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 14:1494–1501

    Article  MATH  MathSciNet  Google Scholar 

  36. Hu M, Xu Z, Zhang R (2008) Full state hybrid projective synchronization of a general class of chaotic maps. Commun Nonlinear Sci Numer Simul 13:782–789

    Article  MATH  MathSciNet  Google Scholar 

  37. Grassi G (2012) Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal. Chin Phys B 21:060504-5

  38. Ouannas A (2014) On full-state hybrid projective synchronization of general discrete chaotic systems. J Nonlinear Dyn 2014:1–6

    Article  MathSciNet  Google Scholar 

  39. Chai Y, Lü L, Zhao HY (2010) Lag synchronization between discrete chaotic systems with diverse structure. Appl Math Mech 31:733–738

    Article  MATH  MathSciNet  Google Scholar 

  40. Yanbo G, Xiaomei Z, Guoping L, Yufan Z (2011) Impulsive synchronization of discrete-time chaotic systems under communication constraints. Commun Nonlinear Sci Numer Simul 16:1580–1588

    Article  MATH  MathSciNet  Google Scholar 

  41. Yan ZY (2005) Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller. Phys Lett A 342:309–317

    Article  MATH  Google Scholar 

  42. Yan ZY (2006) Q-S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic-numeric computation approach. Chaos 16:013119–11

    Article  MATH  MathSciNet  Google Scholar 

  43. Ouannas A, Odibat Z, Shawagfeh N (2016) A new Q-S synchronization results for discrete chaotic systems. Differ Equ Dyn Syst. doi:10.1007/s12591-016-0278-x

    Google Scholar 

  44. Ma Z, Liu Z, Zhang G (2007) Generalized synchronization of discrete systems. Appl Math Mech 28:609–614

    Article  MATH  MathSciNet  Google Scholar 

  45. Grassi G (2012) Generalized synchronization between different chaotic maps via dead-beat control. Chin Phys B 21:050505-5

  46. Ouannas A (2015) A new generalized-type of synchronization for discrete-time chaotic dynamical systems. J Comput Nonlinear Dyn 10:061019-5

  47. Ouannas A, Al-sawalha MM (2015) A new approach to synchronize different dimensional chaotic maps using two scaling matrices. Nonlinear Dyn Syst Theory 15:400–408

    MATH  MathSciNet  Google Scholar 

  48. Al-sawalha MM (2013) Hybrid adaptive synchronization of hyperchaotic systems with fully unknown parameters. Appl Math 4:1621–1628

    Article  Google Scholar 

  49. Khan MA (2012) Hybrid synchronization of Lorenz–Stenflo system with delay. J Adv Comput Sci Technol 1:240–249

    Google Scholar 

  50. Sundarapandian V (2011) Hybrid synchronization of T and Cai chaotic systems by active nonlinear control. Int J Control Theory Appl 4:1–10

    Google Scholar 

  51. Sundarapandian V (2011) Hybrid synchronization of Harb and Wang chaotic systems by active nonlinear control. Int J Comput Inf Syst 3:7–12

    Google Scholar 

  52. Sundarapandian V (2011) Hybrid synchronization of Lorenz and Pehlivan chaotic systems by active nonlinear control. Int J Adv Sci Technol 3:7–12

    Google Scholar 

  53. Ouannas A (2016) Co-existence of various types of synchronization between hyperchaotic maps. Nonlinear Dyn Syst Theory 16:312–321

  54. Gasri A, Ouannas A (2015) A general control method for inverse hybrid function projective synchronization of class of chaotic systems. Int J Math Anal 9:429–436

    Article  MATH  Google Scholar 

  55. Ouannas A, Al-sawalha MM (2015) On inverse full state hybrid projective synchronization of chaotic dynamical systems in discrete-time. Int J Dyn Control. doi:10.1007/s40435-015-0183-0

    MATH  Google Scholar 

  56. Ouannas A, Odibat Z (2016) On inverse generalized synchronization of continuous chaotic dynamical systems. Int J Appl Comput Math 2:1–11

    Article  MathSciNet  Google Scholar 

  57. Ouannas A, Odibat Z (2015) Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dyn 81:765–771

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouannas, A., Azar, A.T. & Abu-Saris, R. A new type of hybrid synchronization between arbitrary hyperchaotic maps. Int. J. Mach. Learn. & Cyber. 8, 1887–1894 (2017). https://doi.org/10.1007/s13042-016-0566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0566-3

Keywords

Navigation