Skip to main content
Log in

Decision rules acquisition based on interval knowledge granules for incomplete ordered decision information systems

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

For incomplete ordered decision information systems (IODIS), the interval, defined as an intersection of the dominating set of one object and the dominated set of another object, is regarded as the basic knowledge granule used for defining the lower and upper approximations. It is shown in this paper that such knowledge granule can help induce the “at least and at most” decision rules for IODIS, which would assign an object to more precise decision classes. In order to compute the optimal “at least and at most” decision rules, the concept of relative reduct of an interval is proposed, and the corresponding discernibility function is constructed for computing the relative reduct. Finally, an illustrative example is provided to demonstrate the advantages of our method in decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, London

    Book  MATH  Google Scholar 

  2. Pawlak Z, Skowron A (2007) Rough sets and Boolean reasoning. Inf Sci 177:41–73

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang XZ, Tsang ECC, Zhao SY, Chen DG, Yeung DS (2007) Learning fuzzy rules from fuzzy samples based on rough set technique. Inf Sci 177:449–451

    Article  MathSciNet  Google Scholar 

  4. Leung Y, Wu WZ, Zhang WX (2006) Knowledge acquisition in incomplete information systems: a rough set approach. Eur J Oper Res 168:164–180

    Article  MathSciNet  MATH  Google Scholar 

  5. Yao YY, Zhao Y (2008) Discernibility matrix simplification for constructing attribute reducts. Inf Sci 179(7):867–882

    Article  MathSciNet  Google Scholar 

  6. Guan YY, Wang HK, Wang Y, Yang F (2009) Attribute reduction and optimal decision rules acquisition for continuous valued information systems. Inf Sci 179:2974–2984

    Article  MathSciNet  MATH  Google Scholar 

  7. Guan YY, Wang HK (2006) Set-valued information systems. Inf Sci 176:2507–2525

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu WZ, Zhang WX, Li HZ (2003) Knowledge acquisition in incomplete fuzzy information systems via the rough set approach. Exp Syst 20(5):280–286

    Article  Google Scholar 

  9. Zhang WX, Mi JS, Wu WZ (2003) Approaches to knowledge reductions in inconsistent systems. Int J Intell Syst 18:989–1000

    Article  MATH  Google Scholar 

  10. Kryszkiewicz M (1999) Rules in incomplete information systems. Inf Sci 113:271–292

    Article  MathSciNet  MATH  Google Scholar 

  11. Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inf Sci 112:39–49

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu XH, Cercone N (1995) Learning in relational databases: a rough set approach. Int J Comput Intell 11(2):323–337

    Google Scholar 

  13. Ma FF, Guan YY, Jiang HB, Chen WJ, Wang HK (2012) The comparative study of pawlak rough set model and dominance-based rough set approach. J Comput Inf Syst 8(11):4705–4715

    Google Scholar 

  14. Greco S, Matarazzo B, Slowinski R (2001) Rough sets theory for multicriteria decision analysis. Eur J Oper Res 129:1–47

    Article  MathSciNet  MATH  Google Scholar 

  15. Greco S, Matarazzo B, Slowinski R (2002) Rough approximation by dominance relation. Int J Intell Syst 17:153–171

    Article  MATH  Google Scholar 

  16. Shao MW, Zhang WX (2005) Dominance relation and rules in an incomplete ordered information system. Int J Intell Syst 20:13–27

    Article  MATH  Google Scholar 

  17. Yang XB, Yang JY, Wu C, Yu DJ (2008) Dominance-based rough set approach and knowledge reduct in incomplete ordered information system. Inf Sci 178:1219–1234

    Article  MathSciNet  MATH  Google Scholar 

  18. Qian YH, Dang CY, Liang JY, Tang D (2009) Set-valued ordered information systems. Inf Sci 179:2809–2832

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo C, Li TR, Chen HM, Liu D (2013) Incremental approaches for updating approximations in set-valued ordered information systems. Knowl-Based Syst 50:218–233

    Article  Google Scholar 

  20. Luo C, Li TR, Chen HM (2014) Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization. Inf Sci 257:210–228

    Article  MathSciNet  Google Scholar 

  21. Wang HK, Guan YY, Huang JL, Shen JT (2015) Decision rules acquisition for inconsistent disjunctive set-valued ordered decision information systems. Math Probl Eng, Article ID 936340

  22. Dembczynski K, Greco S, Slowinski R (2009) Rough set approach to multiple criteria classification with imprecise evaluations and assignments. Eur J Oper Res 198:626–636

    Article  MathSciNet  MATH  Google Scholar 

  23. Qian YH, Liang JY, Dang CY (2008) Interval ordered information systems. Comput Math Appl 56:1994–2009

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang XB, Yu DJ, Yang JT, Wei LH (2009) Dominance-based rough set approach to incomplete interval-valued information system. Data Knowl Eng 68(11):1331–1347

    Article  Google Scholar 

  25. Hu QH, Pan WW, Zhang L, Zhang D, Song YP, Guo MZ, Yu DR (2012) Feature selection for monotonic classification. IEEE Trans Fuzzy Syst 20(1):69–81

    Article  Google Scholar 

  26. Huang B (2011) Graded dominance interval-based fuzzy objective information systems. Knowl-Based Syst 24:1004–1012

    Article  Google Scholar 

  27. Huang B, Li HX, Wei DK (2012) Dominance-based rough set model in intuitionistic fuzzy information systems. Knowl-Based Syst 28:115–123

    Article  Google Scholar 

  28. Huang B, Wei DK, Li HX, Zhuang YL (2013) Using a rough set model to extract rules in dominance-based interval-valued intuitionistic fuzzy information systems. Inf Sci 221:215–229

    Article  MathSciNet  MATH  Google Scholar 

  29. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46(1):39–59

    Article  MathSciNet  MATH  Google Scholar 

  30. Greco S, Matarazzo B, Slowinski R, Stefanowski J (2001) Variable consistency model of dominance-based rough set approach. In: Ziarko W, Yao Y (eds) Rough sets and current trends in computing, LNAI 2005. Springer, Berlin, pp 170–181

    Chapter  Google Scholar 

  31. Blaszczynski J, Greco S, Slowinski R, Szelag M (2009) Monotonic variable consistency rough set approaches. Int J Approx Reas 50:979–999

    Article  MathSciNet  MATH  Google Scholar 

  32. Blaszczynski J, Slowinski R, Szelag M (2011) Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf Sci 181:987–1002

    Article  MathSciNet  Google Scholar 

  33. Ma FF, Guan YY, Du XZ, Huang JL (2013) The study of variable consistency dominance-based rough set approach. J Comput Inf Syst 9(4):1369–1379

    Google Scholar 

  34. Inuiguchi M, Yoshioka Y, Kusunoki Y (2009) Variable-precision dominance-based rough set approach and attribute reduction. Int J Approx Reas 50(8):1199–1214

    Article  MathSciNet  MATH  Google Scholar 

  35. Blaszczynski J, Greco S, Slowinski R (2007) Multi-criteria classification—a new scheme for application of dominance-based decision rules. Eur J Oper Res 181:1030–1044

    Article  MATH  Google Scholar 

  36. Blaszczynski J, Greco S, Slowinski R (2012) Inductive discovery of laws using monotonic rules. Eng Appl Artif Intell 25:284–294

    Article  Google Scholar 

  37. Guan YY, Wang HK, Xu FS, Jiang HB (2013) A new dominance-based rough set model based on interval knowledge granules. In: The proceedings of 2013 10th international conference on fuzzy systems and knowledge discovery, July 23–25, Shenyang, China, pp 559–563

  38. Guan YY, Wang HK, Chen WJ, Chen B (2013) Definite reducts in ordered decision information systems. In: The proceedings of sixth international conference on advanced computational intelligence (ICACI2013), October 19–21, Hangzhou, China, pp 91–95

  39. Guan YY, Wang HK, Xu FS (2014) Interval decision rules acquisition in ordered decision information systems. Chin J Control Dec 29(9):1611–1616

    Google Scholar 

  40. Stefanowski J, Tsoukias A (2001) Incomplete information tables and rough classification. Comput Intell 17:545–566

    Article  Google Scholar 

  41. Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. In: Slowinski R (ed) Intelligent decision support: handbook of applications and advances of rough sets theory. Kluwer Academic Publisher, Dordrecht, pp 331–362

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (61070241) and the Shandong Provincial Natural Science Foundation, China (ZR2013AQ007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Guan, Y., Du, X. et al. Decision rules acquisition based on interval knowledge granules for incomplete ordered decision information systems. Int. J. Mach. Learn. & Cyber. 6, 1019–1028 (2015). https://doi.org/10.1007/s13042-015-0408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0408-8

Keywords

Navigation