Skip to main content

Advertisement

Log in

Intravascular Inflammation Triggers Intracerebral Activated Microglia and Contributes to Secondary Brain Injury After Experimental Subarachnoid Hemorrhage (eSAH)

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Activation of innate immunity contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Microglia accumulation and activation within the brain has recently been shown to induce neuronal cell death after eSAH. In isolated mouse brain capillaries after eSAH, we show a significantly increased gene expression for intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Hence, we hypothesized that extracerebral intravascular inflammatory processes might initiate the previously reported microglia accumulation within the brain tissue. We therefore induced eSAH in knockout mice for ICAM-1 (ICAM-1−/−) and P-selectin glycoprotein ligand-1 (PSGL-1−/−) to find a significant decrease in neutrophil-endothelial interaction within the first 7 days after the bleeding in a chronic cranial window model. This inhibition of neutrophil recruitment to the endothelium results in significantly ameliorated microglia accumulation and neuronal cell death in knockout animals in comparison to controls. Our results suggest an outside-in activation of the CNS innate immune system at the vessel/brain interface following eSAH. Microglia cells, as part of the brain’s innate immune system, are triggered by an inflammatory reaction in the microvasculature after eSAH, thus contributing to neuronal cell death. This finding offers a whole range of new research targets, as well as possible therapy options for patients suffering from eSAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Solenski NJ, Haley EC, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the multicenter cooperative aneurysm study. Crit Care Med. 1995;23:1007–17.

    Article  CAS  PubMed  Google Scholar 

  2. Chou SH-Y, Feske SK, Atherton J, Konigsberg RG, De Jager PL, Du R, et al. Early elevation of serum tumor necrosis factor-α is associated with poor outcome in subarachnoid hemorrhage. J Investig Med. 2012;60:1054–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci. 2007;28:252–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:43–8. Vienna: Springer Vienna.

    PubMed  Google Scholar 

  5. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21.

    Article  CAS  PubMed  Google Scholar 

  6. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, et al. Preventing vasospasm improves outcome after aneurysmal subarachnoid hemorrhage: rationale and design of CONSCIOUS-2 and CONSCIOUS-3 trials. Neurocrit Care. 2010;13:416–24.

    Article  PubMed  Google Scholar 

  7. Clark JF, Loftspring M, Wurster WL, Pyne-Geithman GJ. Chemical and biochemical oxidations in spinal fluid after subarachnoid hemorrhage. Front Biosci. 2008;13:1806–12.

    Article  CAS  PubMed  Google Scholar 

  8. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35:2412–7.

    Article  CAS  PubMed  Google Scholar 

  10. Stein SC, Browne KD, Chen X-H, Smith DH, Graham DI. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 2006;59:781–7. Discussion 787–8.

    Article  PubMed  Google Scholar 

  11. Tiebosch IACW, Dijkhuizen RM, Cobelens PM, Bouts MJRJ, Zwartbol R, van der Meide PH, et al. Effect of interferon-β on neuroinflammation, brain injury and neurological outcome after experimental subarachnoid hemorrhage. Neurocrit Care. 2013;18:96–105. Humana Press Inc.

    Article  CAS  PubMed  Google Scholar 

  12. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32:1659–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hasan DM, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results. J Am Heart Assoc. 2013;2:e000019. Lippincott Williams & Wilkins.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Provencio JJ. Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. Acta Neurochir Suppl. 2013;115:233–8. Vienna: Springer Vienna.

    PubMed  PubMed Central  Google Scholar 

  15. Tulamo R, Frösen J, Junnikkala S, Paetau A, Pitkäniemi J, Kangasniemi M, et al. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery. 2006;59:1069–76. discussion 1076–7.

    Article  PubMed  Google Scholar 

  16. Schneider UC, Davids A-M, Brandenburg S, Müller A, Elke A, Magrini S, et al. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol. 2015;130:215–31. Springer Berlin Heidelberg; 1–17.

    Article  PubMed  Google Scholar 

  17. Dengler J, Schefold JC, Graetz D, Meisel C, Splettstösser G, Volk H-D, et al. Point-of-care testing for interleukin-6 in cerebro spinal fluid (CSF) after subarachnoid haemorrhage. Med Sci Monit. 2008;14:BR265–8.

    PubMed  Google Scholar 

  18. Graetz D, Nagel A, Schlenk F, Sakowitz O, Vajkoczy P, Sarrafzadeh A. High ICP as trigger of proinflammatory IL-6 cytokine activation in aneurysmal subarachnoid hemorrhage. Neurol Res. 2010;32:728–35.

    Article  CAS  PubMed  Google Scholar 

  19. Schneider UC, Schiffler J, Hakiy N, Horn P, Vajkoczy P. Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro. J Neuroinflammation. 2012;9:28. BioMed Central Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xie X, Wu X, Cui J, Li H, Yan X. Increase ICAM-1 and LFA-1 expression by cerebrospinal fluid of subarachnoid hemorrhage patients: involvement of TNF-α. Brain Res. 2013;1512:89–96.

    Article  CAS  PubMed  Google Scholar 

  21. Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010;13:339–46.

    Article  CAS  PubMed  Google Scholar 

  22. Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol. 2003;171:6105–11.

    Article  CAS  PubMed  Google Scholar 

  23. Furie B, Furie BC. Leukocyte crosstalk at the vascular wall. Thromb Haemost. 1997;78:306–9.

    CAS  PubMed  Google Scholar 

  24. Furie B, Furie BC. The molecular basis of platelet and endothelial cell interaction with neutrophils and monocytes: role of P-selectin and the P-selectin ligand, PSGL-1. Thromb Haemost. 1995;74:224–7.

    CAS  PubMed  Google Scholar 

  25. Yang J, Furie BC, Furie B. The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb Haemost. 1999;81:1–7.

    CAS  PubMed  Google Scholar 

  26. Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, et al. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol Pharm. 2012;9:2523–33. American Chemical Society.

    Article  PubMed  Google Scholar 

  27. Coisne C, Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal. 2011;15:1285–303. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.

    Article  CAS  PubMed  Google Scholar 

  28. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84:345–57.

    Article  CAS  PubMed  Google Scholar 

  29. Vajkoczy P, Menger MD, Simpson E, Messmer K. Angiogenesis and vascularization of murine pancreatic islet isografts. Transplantation. 1995;60:123–7.

    Article  CAS  PubMed  Google Scholar 

  30. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab. 1998;18:510–20.

    Article  CAS  PubMed  Google Scholar 

  31. Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol. 2016;131:365–78. Springer Berlin Heidelberg.

    Article  CAS  PubMed  Google Scholar 

  32. Enzmann G, Mysiorek C, Gorina R, Cheng Y-J, Ghavampour S, Hannocks M-J, et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013;125:395–412. Springer-Verlag.

    Article  PubMed  Google Scholar 

  33. Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res. 2014;355:687–99. Springer Berlin Heidelberg.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bendel P, Koivisto T, Hänninen T, Kolehmainen A, Könönen M, Hurskainen H, et al. Subarachnoid hemorrhage is followed by temporomesial volume loss: MRI volumetric study. Neurology. 2006;67:575–82.

    Article  CAS  PubMed  Google Scholar 

  35. Bendel P, Koivisto T, Niskanen E, Könönen M, Aikiä M, Hänninen T, et al. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study. Neuroradiology. 2009;51:711–22.

    Article  PubMed  Google Scholar 

  36. Bendel P, Koivisto T, Aikiä M, Niskanen E, Könönen M, Hänninen T, et al. Atrophic enlargement of CSF volume after subarachnoid hemorrhage: correlation with neuropsychological outcome. AJNR Am J Neuroradiol. 2010;31:370–6.

    Article  CAS  PubMed  Google Scholar 

  37. Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013;10:83. BioMed Central Ltd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woitzik J, Peña-Tapia PG, Schneider UC, Vajkoczy P, Thomé C. Cortical perfusion measurement by indocyanine-green videoangiography in patients undergoing hemicraniectomy for malignant stroke. Stroke. 2006;37:1549–51.

    Article  PubMed  Google Scholar 

  39. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schoknecht K, Shalev H. Blood-brain barrier dysfunction in brain diseases: clinical experience. Epilepsia. 2012;53 Suppl 6:7–13. Blackwell Publishing Ltd.

    Article  CAS  PubMed  Google Scholar 

  41. Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10:44–58.

    Article  CAS  PubMed  Google Scholar 

  42. Thal SC, Sporer S, Schmid-Elsaesser R, Plesnila N, Zausinger S. Inhibition of bradykinin B2 receptors before, not after onset of experimental subarachnoid hemorrhage prevents brain edema formation and improves functional outcome. Crit Care Med. 2009;37:2228–34.

    Article  CAS  PubMed  Google Scholar 

  43. Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–12.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kasius KM, Frijns CJM, Algra A, Rinkel GJE. Association of platelet and leukocyte counts with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis. 2010;29:576–83.

    Article  CAS  PubMed  Google Scholar 

  45. Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S, Pospieszalska MK, et al. “Slings” enable neutrophil rolling at high shear. Nature. 2012;488:399–403. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuwano Y, Spelten O, Zhang H, Ley K, Zarbock A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood. 2010;116:617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu H-L, Garcia M, Testai F, Vetri F, Barabanova A, Pelligrino DA, et al. Pharmacologic blockade of vascular adhesion protein-1 lessens neurologic dysfunction in rats subjected to subarachnoid hemorrhage. Brain Res. 2014;1586:83–9.

    Article  CAS  PubMed  Google Scholar 

  48. Xu H, Testai FD, Valyi-Nagy T, Pavuluri NM, Zhai F, Nanegrungsunk D, et al. VAP-1 blockade prevents subarachnoid hemorrhage-associated cerebrovascular dilating dysfunction via repression of a neutrophil recruitment-related mechanism. Brain Res. 2015;1603:141–9.

    Article  CAS  PubMed  Google Scholar 

  49. Smithason S, Moore SK, Provencio JJ. Systemic administration of LPS worsens delayed deterioration associated with vasospasm after subarachnoid hemorrhage through a myeloid cell-dependent mechanism. Neurocrit Care. 2012;16:327–34. Humana Press Inc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smithason S, Moore SK, Provencio JJ. Low-dose lipopolysaccharide injection prior to subarachnoid hemorrhage modulates delayed deterioration associated with vasospasm in subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:253–8. Springer Vienna.

    PubMed  PubMed Central  Google Scholar 

  51. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87:779–89. Society for Leukocyte Biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 2014;128:191–213. Springer Berlin Heidelberg.

    Article  CAS  PubMed  Google Scholar 

  53. Barone FC, Schmidt DB, Hillegass LM, Price WJ, White RF, Feuerstein GZ, et al. Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia. Stroke. 1992;23:1337–47. discussion 1347–8.

    Article  CAS  PubMed  Google Scholar 

  54. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144:188–99. American Society for Investigative Pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. del Zoppo GJ. Lessons from stroke trials using anti-inflammatory approaches that have failed. Ernst Schering Res. Found. Workshop. 2004;:155–84.

  56. Xin Z-L, Wu X-K, Xu J-R, Li X. Arachnoid cell involvement in the mechanism of coagulation-initiated inflammation in the subarachnoid space after subarachnoid hemorrhage. J Zhejiang Univ Sci B. 2010;11:516–23.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Greenhalgh AD, Rothwell NJ, Allan SM. An endovascular perforation model of subarachnoid haemorrhage in rat produces heterogeneous infarcts that increase with blood load. Translat Stroke Res. 2012;3:164–72.

    Article  CAS  Google Scholar 

  58. Provencio JJ, Fu X, Siu A, Rasmussen PA, Hazen SL, Ransohoff RM. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care. 2010;12:244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Urban Deutsch (Theodor Kocher Institute, Bern, Switzerland) for maintaining the breeding stock of the PSGL-1−/− and ICAM-1−/− C67BL/6 mice. We thank Lars Winkler (FMP Berlin Buch) for the preparation of isolated brain capillaries. We thank Dr. Susan Brandenburg for FACS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vajkoczy.

Ethics declarations

This work was supported by the Deutsche Forschungsgemeinschaft (SFB TRR 43 and NeuroCure Exc 257 to FLH and PV, as well as HE 3130/6-1 to FLH) and the Federal Ministry of Education and Research (DLR/BMBF; Kompetenznetz Degenerative Demenzen) to FLH and the Swiss Heart Foundation to BE.

Conflict of Interest

Etienne Atangana has no conflict of interest.

Ulf C. Schneider has no conflict of interest.

Kinga Blecharz has no conflict of interest.

Salima Magrini has no conflict of interest.

Josephin Wagner has no conflict of interest.

Melina Nieminen-Kelhä has no conflict of interest.

Irina Kremenetskaia has no conflict of interest.

Frank Heppner has no conflict of interest.

Britta Engelhardt has no conflict of interest.

Peter Vajkoczy has no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Etienne Atangana and Ulf C. Schneider contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Illustration of the purity of isolated brain vessels by co-staining with Zonula occludens-1 (ZO-1) and claudin-5, both being specific vascular tight junction markers. Cell bodies were counterstained with DAPI. (PPTX 145 kb)

Fig. S2

Representative dot plots of the FACS analysis gated for CD45 and CD11b to detect an up-regulation of lymphocytes in brain homogenates as a supplement to the data, summarized in Fig. 5. No significant differences in lymphocyte numbers were found in relation to all living cells (a, upper), or in relation to all living immune cells (a, lower). The gating strategy is displayed (b) (PPTX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atangana, E., Schneider, U.C., Blecharz, K. et al. Intravascular Inflammation Triggers Intracerebral Activated Microglia and Contributes to Secondary Brain Injury After Experimental Subarachnoid Hemorrhage (eSAH). Transl. Stroke Res. 8, 144–156 (2017). https://doi.org/10.1007/s12975-016-0485-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0485-3

Keywords

Navigation