Skip to main content

Advertisement

Log in

The Role of Na+/Ca2+ Exchanger Subtypes in Neuronal Ischemic Injury

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The Na+/Ca2+ exchanger (NCX) plays an important role in the maintenance of Na+ and Ca2+ homeostasis in most cells including neurons under physiological and pathological conditions. It exists in three subtypes (NCX1-3) with different tissue distributions but all of them are present in the brain. NCX transports Na+ and Ca2+ in either Ca2+-efflux (forward) or Ca2+-influx (reverse) mode, depending on membrane potential and transmembrane ion gradients. During neuronal ischemia, Na+ and Ca2+ ionic disturbances favor NCX to work in reverse mode, giving rise to increased intracellular Ca2+ levels, while it may regain its forward mode activity on reperfusion. The exact significance of NCX in neuronal ischemic and reperfusion states remains unclear. The differential role of NCX subtypes in ischemic neuronal injury has been extensively investigated using various pharmacological tools as well as genetic models. This review discusses the mode of action of NCX in ischemic and reperfusion states, the differential roles played by NCX subtypes in these states as well as the role of NCX in pre- and postconditioning. NCX subtypes carry variable roles in ischemic injury. Furthermore, the mode of action of each subtype varies in ischemia and reperfusion states. Thus, therapeutic targeting of NCX in stroke should be based on appropriate timing of the administration of NCX subtype-specific strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408. doi:10.1152/physrev.00004.2005.

    Article  CAS  PubMed  Google Scholar 

  2. Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005;15(3):266–74. doi:10.1016/j.conb.2005.05.006.

    Article  CAS  PubMed  Google Scholar 

  3. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85(1):201–79. doi:10.1152/physrev.00004.2004.

    Article  CAS  PubMed  Google Scholar 

  4. Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004;56(4):633–54. doi:10.1124/pr.56.4.5.

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, et al. Cloning of the NCX2 isoform of the plasma membrane Na(+)-Ca2+ exchanger. J Biol Chem. 1994;269(26):17434–9.

    CAS  PubMed  Google Scholar 

  6. Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem. 1996;271(40):24914–21.

    Article  CAS  PubMed  Google Scholar 

  7. Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem. 1999;274(2):910–7.

    Article  CAS  PubMed  Google Scholar 

  8. Philipson KD, Longoni S, Ward R. Purification of the cardiac Na+-Ca2+ exchange protein. Biochim Biophys Acta. 1988;945(2):298–306.

    Article  CAS  PubMed  Google Scholar 

  9. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999;79(3):763–854.

    CAS  PubMed  Google Scholar 

  10. Philipson KD, Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol. 2000;62:111–33. doi:10.1146/annurev.physiol.62.1.111.

    Article  CAS  PubMed  Google Scholar 

  11. Quednau BD, Nicoll DA, Philipson KD. The sodium/calcium exchanger family-SLC8. Arch Eur J Physiol. 2004;447(5):543–8. doi:10.1007/s00424-003-1065-4.

    Article  CAS  Google Scholar 

  12. Canitano A, Papa M, Boscia F, Castaldo P, Sellitti S, Taglialatela M, et al. Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann N Y Acad Sci. 2002;976:394–404.

    Article  CAS  PubMed  Google Scholar 

  13. Linck B, Qiu Z, He Z, Tong Q, Hilgemann DW, Philipson KD. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am J Physiol. 1998;274(2 Pt 1):C415–23.

    CAS  PubMed  Google Scholar 

  14. Kiedrowski L, Czyz A, Li XF, Lytton J. Preferential expression of plasmalemmal K-dependent Na+/Ca2+ exchangers in neurons versus astrocytes. Neuroreport. 2002;13(12):1529–32.

    Article  CAS  PubMed  Google Scholar 

  15. Kimura J, Watanabe Y, Li L, Watano T. Pharmacology of Na+/Ca2+ exchanger. Ann N Y Acad Sci. 2002;976:513–9.

    Article  CAS  PubMed  Google Scholar 

  16. Nicoll DA, Longoni S, Philipson KD. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990;250(4980):562–5.

    Article  CAS  PubMed  Google Scholar 

  17. Kraev A, Chumakov I, Carafoli E. The organization of the human gene NCX1 encoding the sodium-calcium exchanger. Genomics. 1996;37(1):105–12. doi:10.1006/geno.1996.0526.

    Article  CAS  PubMed  Google Scholar 

  18. Kikuno R, Nagase T, Ishikawa K, Hirosawa M, Miyajima N, Tanaka A, et al. Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res: Int J Rapid Publ Rep Genes Genomes. 1999;6(3):197–205.

    Article  CAS  Google Scholar 

  19. Gabellini N, Bortoluzzi S, Danieli GA, Carafoli E. The human SLC8A3 gene and the tissue-specific Na+/Ca2+ exchanger 3 isoforms. Gene. 2002;298(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 2012;335(6069):686–90. doi:10.1126/science.1215759.

    Article  CAS  PubMed  Google Scholar 

  21. Michel LY, Verkaart S, Koopman WJ, Willems PH, Hoenderop JG, Bindels RJ. Function and regulation of the Na+-Ca2+ exchanger NCX3 splice variants in brain and skeletal muscle. J Biol Chem. 2014;289(16):11293–303. doi:10.1074/jbc.M113.529388.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Papa M, Canitano A, Boscia F, Castaldo P, Sellitti S, Porzig H, et al. Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J Comp Neurol. 2003;461(1):31–48. doi:10.1002/cne.10665.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SL, Yu AS, Lytton J. Tissue-specific expression of Na(+)-Ca2+ exchanger isoforms. J Biol Chem. 1994;269(21):14849–52.

    CAS  PubMed  Google Scholar 

  24. Philipson KD, Nicoll DA, Matsuoka S, Hryshko LV, Levitsky DO, Weiss JN. Molecular regulation of the Na(+)-Ca2+ exchanger. Ann N Y Acad Sci. 1996;779:20–8.

    Article  CAS  PubMed  Google Scholar 

  25. Paluzzi S, Alloisio S, Zappettini S, Milanese M, Raiteri L, Nobile M, et al. Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization. J Neurochem. 2007;103(3):1196–207. doi:10.1111/j.1471-4159.2007.04826.x.

    Article  CAS  PubMed  Google Scholar 

  26. Reyes RC, Verkhratsky A, Parpura V. Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN neuro. 2012;4(1). doi:10.1042/AN20110059.

  27. Boscia F, D’Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, et al. Silencing or knocking out the Na(+)/Ca(2+) exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ. 2012;19(4):562–72. doi:10.1038/cdd.2011.125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kang TM, Hilgemann DW. Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature. 2004;427(6974):544–8. doi:10.1038/nature02271.

    Article  CAS  PubMed  Google Scholar 

  29. Khananshvili D. Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Arch Eur J Physiol. 2014;466(1):43–60. doi:10.1007/s00424-013-1405-y.

    Article  CAS  Google Scholar 

  30. Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H, John S, et al. The Na+/Ca2+ exchange molecule: an overview. Ann N Y Acad Sci. 2002;976:1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Schnetkamp PP. The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond. Arch Eur J Physiol. 2004;447(5):683–8. doi:10.1007/s00424-003-1069-0.

    Article  CAS  Google Scholar 

  32. Meyer FB. Calcium, neuronal hyperexcitability and ischemic injury. Brain Res Brain Res Rev. 1989;14(3):227–43.

    Article  CAS  PubMed  Google Scholar 

  33. Taglialatela M, Canzoniero LM, Cragoe Jr EJ, Di Renzo G, Annunziato L. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons. Mol Pharmacol. 1990;38(3):393–400.

    CAS  PubMed  Google Scholar 

  34. Sharikabad MN, Cragoe Jr EJ, Brors O. Inhibition by 5-N-(4-chlorobenzyl)-2′,4′-dimethylbenzamil of Na+/Ca2+ exchange and l-type Ca2+ channels in isolated cardiomyocytes. Pharmacol Toxicol. 1997;80(2):57–61.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe Y, Kimura J. Inhibitory effect of amiodarone on Na(+)/Ca(2+) exchange current in guinea-pig cardiac myocytes. Br J Pharmacol. 2000;131(1):80–4. doi:10.1038/sj.bjp.0703527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Watano T, Kimura J, Morita T, Nakanishi H. A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol. 1996;119(3):555–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. He Z, Petesch N, Voges K, Roben W, Philipson KD. Identification of important amino acid residues of the Na+-Ca2+ exchanger inhibitory peptide, XIP. Jo Membr Biol. 1997;156(2):149–56.

    Article  CAS  Google Scholar 

  38. Iwamoto T, Shigekawa M. Differential inhibition of Na+/Ca2+ exchanger isoforms by divalent cations and isothiourea derivative. Am J Physiol. 1998;275(2 Pt 1):C423–30.

    CAS  PubMed  Google Scholar 

  39. Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther. 2001;298(1):249–56.

    CAS  PubMed  Google Scholar 

  40. Pignataro G, Tortiglione A, Scorziello A, Giaccio L, Secondo A, Severino B, et al. Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology. 2004;46(3):439–48. doi:10.1016/j.neuropharm.2003.09.015.

    Article  CAS  PubMed  Google Scholar 

  41. Trosper TL, Philipson KD. Effects of divalent and trivalent cations on Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1983;731(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, et al. Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na(+)/Ca(2+) exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol. 2001;132(6):1317–25. doi:10.1038/sj.bjp.0703926.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. de la Pena P, Reeves JP. Inhibition and activation of Na+-Ca2+ exchange activity by quinacrine. Am J Physiol. 1987;252(1 Pt 1):C24–9.

    PubMed  Google Scholar 

  44. Iwamoto T, Kita S, Uehara A, Imanaga I, Matsuda T, Baba A, et al. Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J Biol Chem. 2004;279(9):7544–53. doi:10.1074/jbc.M310491200.

    Article  CAS  PubMed  Google Scholar 

  45. Hasegawa H, Muraoka M, Matsui K, Kojima A. Discovery of a novel potent Na+/Ca2+ exchanger inhibitor: design, synthesis and structure-activity relationships of 3,4-dihydro-2(1H)-quinazolinone derivatives. Bioorg Med Chem Lett. 2003;13(20):3471–5.

    Article  CAS  PubMed  Google Scholar 

  46. Erdreich A, Rahamimoff H. The inhibition of Ca uptake in cardiac membrane vesicles by verapamil. Biochem Pharmacol. 1984;33(14):2315–23.

    Article  CAS  PubMed  Google Scholar 

  47. Iwamoto T, Uehara A, Nakamura TY, Imanaga I, Shigekawa M. Chimeric analysis of Na(+)/Ca(2+) exchangers NCX1 and NCX3 reveals structural domains important for differential sensitivity to external Ni(2+) or Li(+). J Biol Chem. 1999;274(33):23094–102.

    Article  CAS  PubMed  Google Scholar 

  48. Reeves JP, Bailey CA, Hale CC. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem. 1986;261(11):4948–55.

    CAS  PubMed  Google Scholar 

  49. Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G, et al. Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem. 2000;74(4):1505–13.

    Article  CAS  PubMed  Google Scholar 

  50. Cengiz P, Kleman N, Uluc K, Kendigelen P, Hagemann T, Akture E, et al. Inhibition of Na+/H+ exchanger isoform 1 is neuroprotective in neonatal hypoxic ischemic brain injury. Antioxid Redox Signal. 2011;14(10):1803–13. doi:10.1089/ars.2010.3468.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci: Off J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2012;33(2):223–37. doi:10.1007/s10072-011-0828-5.

    Article  Google Scholar 

  52. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122–9. doi:10.1016/j.ceca.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  53. Robertson CL, Scafidi S, McKenna MC, Fiskum G. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Exp Neurol. 2009;218(2):371–80. doi:10.1016/j.expneurol.2009.04.030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta. 2009;1787(5):335–44. doi:10.1016/j.bbabio.2009.02.021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403(6767):316–21. doi:10.1038/35002090.

    Article  CAS  PubMed  Google Scholar 

  56. Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci: Off J Soc Neurosci. 1992;12(2):430–9.

  57. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115(7):863–77.

    Article  CAS  PubMed  Google Scholar 

  58. Amoroso S, Sensi S, di Renzo G, Annunziato L. Inhibition of the Na(+)-Ca++ exchanger enhances anoxia and glucopenia-induced [3H] aspartate release in hippocampal slices. J Pharmacol Exp Ther. 1993;264(2):515–20.

    CAS  PubMed  Google Scholar 

  59. Breder J, Sabelhaus CF, Opitz T, Reymann KG, Schroder UH. Inhibition of different pathways influencing Na(+) homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology. 2000;39(10):1779–87.

    Article  CAS  PubMed  Google Scholar 

  60. Czyz A, Baranauskas G, Kiedrowski L. Instrumental role of Na+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells. J Neurochem. 2002;81(2):379–89.

    Article  CAS  PubMed  Google Scholar 

  61. Pilitsis JG, Diaz FG, O’Regan MH, Phillis JW. Inhibition of Na(+)/Ca(2+) exchange by KB-R7943, a novel selective antagonist, attenuates phosphoethanolamine and free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res. 2001;916(1–2):192–8.

    Article  CAS  PubMed  Google Scholar 

  62. Tortiglione A, Pignataro G, Minale M, Secondo A, Scorziello A, Di Renzo GF, et al. Na+/Ca2+ exchanger in Na+ efflux-Ca2+ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia. Ann N Y Acad Sci. 2002;976:408–12.

    Article  CAS  PubMed  Google Scholar 

  63. Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW. The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci: Off J Neurosurg Soc Austral. 2007;14(6):507–14. doi:10.1016/j.jocn.2006.07.013.

    Article  CAS  Google Scholar 

  64. Amoroso S, De Maio M, Russo GM, Catalano A, Bassi A, Montagnani S, et al. Pharmacological evidence that the activation of the Na(+)-Ca2+ exchanger protects C6 glioma cells during chemical hypoxia. Br J Pharmacol. 1997;121(2):303–9. doi:10.1038/sj.bjp.0701092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sirabella R, Secondo A, Pannaccione A, Scorziello A, Valsecchi V, Adornetto A, et al. Anoxia-induced NF-kappaB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke: J Cerebral Circ. 2009;40(3):922–9. doi:10.1161/STROKEAHA.108.531962.

    Article  CAS  Google Scholar 

  66. Annunziato L, Cataldi M, Pignataro G, Secondo A, Molinaro P. Glutamate-independent calcium toxicity: introduction. Stroke: J Cerebral Circ. 2007;38(2 Suppl):661–4. doi:10.1161/01.STR.0000247942.42349.37.

    Article  Google Scholar 

  67. Floyd CL, Gorin FA, Lyeth BG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia. 2005;51(1):35–46. doi:10.1002/glia.20183.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Amran MS, Homma N, Hashimoto K. Pharmacology of KB-R7943: a Na+-Ca2+ exchange inhibitor. Cardiovasc Drug Rev. 2003;21(4):255–76.

    Article  CAS  PubMed  Google Scholar 

  69. Wiczer BM, Marcu R, Hawkins BJ. KB-R7943, a plasma membrane Na(+)/Ca(2+) exchanger inhibitor, blocks opening of the mitochondrial permeability transition pore. Biochem Biophys Res Commun. 2014;444(1):44–9. doi:10.1016/j.bbrc.2014.01.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Santo-Domingo J, Vay L, Hernandez-Sanmiguel E, Lobaton CD, Moreno A, Montero M, et al. The plasma membrane Na+/Ca2+ exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. Br J Pharmacol. 2007;151(5):647–54. doi:10.1038/sj.bjp.0707260.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Reuter H, Henderson SA, Han T, Matsuda T, Baba A, Ross RS, et al. Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ Res. 2002;91(2):90–2.

    Article  CAS  PubMed  Google Scholar 

  72. Morimoto N, Kita S, Shimazawa M, Namimatsu H, Tsuruma K, Hayakawa K, et al. Preferential involvement of Na(+)/Ca(2)(+) exchanger type-1 in the brain damage caused by transient focal cerebral ischemia in mice. Biochem Biophys Res Commun. 2012;429(3–4):186–90. doi:10.1016/j.bbrc.2012.10.114.

    Article  CAS  PubMed  Google Scholar 

  73. Ranciat-McComb NS, Bland KS, Huschenbett J, Ramonda L, Bechtel M, Zaidi A, et al. Antisense oligonucleotide suppression of Na(+)/Ca(2+) exchanger activity in primary neurons from rat brain. Neurosci Lett. 2000;294(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  74. Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell. 2005;120(2):275–85. doi:10.1016/j.cell.2004.11.049.

    Article  CAS  PubMed  Google Scholar 

  75. Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, et al. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 2002;9(8):818–31. doi:10.1038/sj.cdd.4401042.

    Article  CAS  PubMed  Google Scholar 

  76. Li LL, Sun LN, Zhou HY, Li ZB, Wang XL. Selective alteration of expression of Na+/Ca2+ exchanger isoforms after transient focal cerebral ischemia in rats. Neurosci Lett. 2006;404(3):249–53. doi:10.1016/j.neulet.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  77. Pignataro G, Boscia F, Esposito E, Sirabella R, Cuomo O, Vinciguerra A, et al. NCX1 and NCX3: two new effectors of delayed preconditioning in brain ischemia. Neurobiol Dis. 2012;45(1):616–23. doi:10.1016/j.nbd.2011.10.007.

    Article  CAS  PubMed  Google Scholar 

  78. Cross JL, Boulos S, Shepherd KL, Craig AJ, Lee S, Bakker AJ, et al. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation. Neurosci Res. 2012;73(3):191–8. doi:10.1016/j.neures.2012.04.007.

    Article  CAS  PubMed  Google Scholar 

  79. Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, et al. Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke: J Cerebral Circ. 2004;35(11):2566–70. doi:10.1161/01.STR.0000143730.29964.93.

    Article  CAS  Google Scholar 

  80. Gandhi A, Siedlecka U, Shah AP, Navaratnarajah M, Yacoub MH, Terracciano CM. The effect of SN-6, a novel sodium-calcium exchange inhibitor, on contractility and calcium handling in isolated failing rat ventricular myocytes. Cardiovasc Ther. 2013;31(6):e115–24. doi:10.1111/1755-5922.12045.

    Article  CAS  PubMed  Google Scholar 

  81. Inokuchi Y, Shimazawa M, Nakajima Y, Komuro I, Matsuda T, Baba A, et al. A Na+/Ca2+ exchanger isoform, NCX1, is involved in retinal cell death after N-methyl-D-aspartate injection and ischemia-reperfusion. J Neurosci Res. 2009;87(4):906–17. doi:10.1002/jnr.21906.

    Article  CAS  PubMed  Google Scholar 

  82. Newell EW, Stanley EF, Schlichter LC. Reversed Na+/Ca2+ exchange contributes to Ca2+ influx and respiratory burst in microglia. Channels. 2007;1(5):366–76.

    Article  PubMed  Google Scholar 

  83. Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, et al. NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke: J Cerebral Circ. 2009;40(11):3608–17. doi:10.1161/STROKEAHA.109.557439.

    Article  CAS  Google Scholar 

  84. Molinaro P, Cataldi M, Cuomo O, Viggiano D, Pignataro G, Sirabella R, et al. Genetically modified mice as a strategy to unravel the role played by the Na(+)/Ca (2+) exchanger in brain ischemia and in spatial learning and memory deficits. Adv Exp Med Biol. 2013;961:213–22. doi:10.1007/978-1-4614-4756-6_18.

    Article  CAS  PubMed  Google Scholar 

  85. Jeon D, Chu K, Jung KH, Kim M, Yoon BW, Lee CJ, et al. Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium. 2008;43(5):482–91. doi:10.1016/j.ceca.2007.08.003.

    Article  CAS  PubMed  Google Scholar 

  86. Jeffs GJ, Meloni BP, Sokolow S, Herchuelz A, Schurmans S, Knuckey NW. NCX3 knockout mice exhibit increased hippocampal CA1 and CA2 neuronal damage compared to wild-type mice following global cerebral ischemia. Exp Neurol. 2008;210(1):268–73. doi:10.1016/j.expneurol.2007.10.013.

    Article  CAS  PubMed  Google Scholar 

  87. Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, et al. Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci: Off J Soc Neurosci. 2008;28(5):1179–84. doi:10.1523/JNEUROSCI. 4671-07.2008.

    Article  CAS  Google Scholar 

  88. Bano D, Munarriz E, Chen HL, Ziviani E, Lippi G, Young KW, et al. The plasma membrane Na+/Ca2+ exchanger is cleaved by distinct protease families in neuronal cell death. Ann N Y Acad Sci. 2007;1099:451–5. doi:10.1196/annals.1387.006.

    Article  CAS  PubMed  Google Scholar 

  89. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–48. doi:10.1038/nrn1927.

    Article  CAS  PubMed  Google Scholar 

  90. Pignataro G, Esposito E, Cuomo O, Sirabella R, Boscia F, Guida N, et al. The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J Cerebral Blood Flow Metab: Off J Int Soc Cerebral Blood Flow Metab. 2011;31(1):362–70. doi:10.1038/jcbfm.2010.100.

    Article  CAS  Google Scholar 

  91. Gobbi P, Castaldo P, Minelli A, Salucci S, Magi S, Corcione E, et al. Mitochondrial localization of Na+/Ca2+ exchangers NCX1-3 in neurons and astrocytes of adult rat brain in situ. Pharmacol Res: Off J Italian Pharmacol Soc. 2007;56(6):556–65. doi:10.1016/j.phrs.2007.10.005.

    Article  CAS  Google Scholar 

  92. Castaldo P, Cataldi M, Magi S, Lariccia V, Arcangeli S, Amoroso S. Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases. Prog Neurobiol. 2009;87(1):58–79. doi:10.1016/j.pneurobio.2008.09.017.

    Article  CAS  PubMed  Google Scholar 

  93. Cuomo O, Pignataro G, Gala R, Boscia F, Tortiglione A, Molinaro P, et al. Involvement of the potassium-dependent sodium/calcium exchanger gene product NCKX2 in the brain insult induced by permanent focal cerebral ischemia. Ann N Y Acad Sci. 2007;1099:486–9. doi:10.1196/annals.1387.051.

    Article  CAS  PubMed  Google Scholar 

  94. Cuomo O, Gala R, Pignataro G, Boscia F, Secondo A, Scorziello A, et al. A critical role for the potassium-dependent sodium-calcium exchanger NCKX2 in protection against focal ischemic brain damage. J Neurosci: Off J Soc Neurosci. 2008;28(9):2053–63. doi:10.1523/JNEUROSCI. 4912-07.2008.

    Article  CAS  Google Scholar 

  95. Kiedrowski L. NCX and NCKX operation in ischemic neurons. Ann N Y Acad Sci. 2007;1099:383–95. doi:10.1196/annals.1387.035.

    Article  CAS  PubMed  Google Scholar 

  96. Wakimoto K, Kobayashi K, Kuro OM, Yao A, Iwamoto T, Yanaka N, et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem. 2000;275(47):36991–8. doi:10.1074/jbc.M004035200.

    Article  CAS  PubMed  Google Scholar 

  97. Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, et al. Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ Res. 2004;95(6):604–11. doi:10.1161/01.RES.0000142316.08250.68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to express my sincere thanks and appreciation to Dr. Seena Ajit, Drexel University College of Medicine for her continuous support and encouragement. I also want to extend my thanks to Dr. Ole Mortensen and Dr. James Barrett. I acknowledge the help of Diana Winters in editing the review. The author is a recipient of a Fulbright grant funded by the US Department of State Bureau of Educational and Cultural Affairs.

Compliance with Ethical Standards

Conflicts of Interest

The author declares no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Botros Shenoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenoda, B. The Role of Na+/Ca2+ Exchanger Subtypes in Neuronal Ischemic Injury. Transl. Stroke Res. 6, 181–190 (2015). https://doi.org/10.1007/s12975-015-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0395-9

Keywords

Navigation