Skip to main content

Advertisement

Log in

Effect of Iron Chelators on Methemoglobin and Thrombin Preconditioning

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Cell loss immediately adjacent to an intracerebral hemorrhage may be mediated in part by the toxicities of extracellular hemoglobin (Hb) and thrombin. However, at low concentrations, these proteins induce tolerance to hemin and iron that may limit further peri-hematomal injury as erythrocyte lysis progresses. The mechanisms mediating these preconditioning effects have not been completely defined, but increased expression of both heme oxygenase (HO)-1 and iron binding proteins likely contributes. In the present study, we hypothesized that iron chelator therapy would attenuate this protective response. Pretreatment of cortical glial cultures (> 90 % GFAP+) with 3 μM methemoglobin (metHb) or 5 units/ml thrombin for 24 h was nontoxic per se, and increased HO-1 and ferritin expression. When challenged with a toxic concentration of hemin, the increase in cellular redox-active iron was attenuated in preconditioned cultures and cell survival was increased. However, if cultures were pretreated with metHb or thrombin plus deferoxamine or 2,2’-bipyridyl, ferritin induction was prevented and cellular redox-active iron increased with hemin treatment. Preconditioning-mediated cytoprotection was consistently reduced by deferoxamine, while 2,2’-bipyridyl had a variable effect. Neither chelator altered HO-1 expression. A cytoprotective response was preserved when chelator therapy was limited to 11 hours of the 24 h preconditioning interval. These results suggest a potentially deleterious effect of continuous iron chelator therapy after ICH. Intermittent therapy may remove peri-hematomal iron without negating the benefits of exposure to low concentrations of Hb or thrombin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

References

  1. Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke. 2007;38(5):1621–5.

    Article  PubMed  CAS  Google Scholar 

  2. Park KW, Jin BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons: role of neuronal NADPH oxidase. J Neurosci Res. 2008;86(5):1053–63. doi:10.1002/jnr.21571.

    Article  PubMed  CAS  Google Scholar 

  3. Gong Y, Xi GH, Keep RF, Hoff JT, Hua Y. Complement inhibition attenuates brain edema and neurological deficits induced by thrombin. Acta Neurochir Suppl. 2005;95:389–92.

    Article  PubMed  CAS  Google Scholar 

  4. Alyash A. Redox and radical reactions of hemoglobin solutions: toxicities and protective strategies. In: Winslow R, editor. Blood Substitutes. London: Academic Press; 2006. p. 197–205.

    Chapter  Google Scholar 

  5. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3.

    Article  PubMed  CAS  Google Scholar 

  6. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.

    Article  PubMed  CAS  Google Scholar 

  7. Wu H, Wu T, Li M, Wang J. Efficacy of the lipid-soluble iron chelator 2,2'-dipyridyl against hemorrhagic brain injury. Neurobiol Dis. 2012;45(1):388–94. doi:10.1016/j.nbd.2011.08.028.

    Article  PubMed  CAS  Google Scholar 

  8. Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42(11):3067–74. doi:10.1161/STROKEAHA.111.617589.

    Article  PubMed  CAS  Google Scholar 

  9. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, et al. Ferritin: a cytoprotective strategem of endothelium. J Biol Chem. 1992;267(25):18148–53.

    PubMed  CAS  Google Scholar 

  10. Regan RF, Kumar N, Gao F, Guo YP. Ferritin induction protects cortical astrocytes from heme-mediated oxidative injury. Neuroscience. 2002;113:985–94.

    Article  PubMed  CAS  Google Scholar 

  11. Hua Y, Keep RF, Hoff JT, Xi G. Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron. J Cereb Blood Flow Metab. 2003;23(12):1448–54. doi:10.1097/01.WCB.0000090621.86921.D5.

    Article  PubMed  CAS  Google Scholar 

  12. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999;30(6):1247–55.

    Article  PubMed  CAS  Google Scholar 

  13. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99(10):3505–16.

    Article  PubMed  CAS  Google Scholar 

  14. Chen-Roetling J, Liu W, Regan RF. Iron accumulation and neurotoxicity in cortical cultures treated with holotransferrin. Free Radic Biol Med. 2011;51(11):1966–74. doi:10.1016/j.freeradbiomed.2011.08.021.

    Article  PubMed  CAS  Google Scholar 

  15. Gesuete R, Orsini F, Zanier ER, Albani D, Deli MA, Bazzoni G, et al. Glial cells drive preconditioning-induced blood-brain barrier protection. Stroke. 2011;42(5):1445–53. doi:10.1161/STROKEAHA.110.603266.

    Article  PubMed  Google Scholar 

  16. Li Z, Chen-Roetling J, Regan RF. Increasing expression of H- or L-ferritin protects cortical astrocytes from hemin toxicity. Free Radic Res. 2009;43(6):613–21.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang Y, Wu J, Hua Y, Keep RF, Xiang J, Hoff JT, et al. Thrombin-receptor activation and thrombin-induced brain tolerance. J Cereb Blood Flow Metab. 2002;22(4):404–10. doi:10.1097/00004647-200204000-00004.

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Regan RF. Increasing expression of heme oxygenase-1 by proteasome inhibition protects astrocytes from heme-mediated oxidative injury. Curr Neurovasc Res. 2005;2(3):189–96.

    Article  PubMed  CAS  Google Scholar 

  19. Koh JY, Choi DW. Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. J Neurosci. 1988;8(6):2153–63.

    PubMed  CAS  Google Scholar 

  20. Chen-Roetling J, Li Z, Chen M, Awe OO, Regan RF. Heme oxygenase activity and hemoglobin neurotoxicity are attenuated by inhibitors of the MEK/ERK pathway. Neuropharmacology. 2009;56(5):922–8. doi:10.1016/j.neuropharm.2009.01.022.

    Article  PubMed  CAS  Google Scholar 

  21. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med. 2002;33(8):1037–46.

    Article  PubMed  CAS  Google Scholar 

  22. Bradley Jr WG. MR appearance of hemorrhage in the brain. Radiology. 1993;189(1):15–26.

    PubMed  Google Scholar 

  23. Kushner JP, Porter JP, Olivieri NF. Secondary iron overload. Hematology. 2001;2001(1):47–61.

    Article  Google Scholar 

  24. Benvenisti-Zarom L, Regan RF. Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiol Dis. 2007;26(3):688–95.

    Article  PubMed  CAS  Google Scholar 

  25. Warkentin LM, Auriat AM, Wowk S, Colbourne F. Failure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 2010;1309:95–103.

    Article  PubMed  CAS  Google Scholar 

  26. Whitten CF, Gibson GW, Good MH, Goodwin JF, Brough AJ. Studies in acute iron poisoning. I. Desferrioxamine in the treatment of acute iron poisoning: clinical observations, experimental studies, and theoretical considerations. Pediatrics. 1965;36(3):322–35.

    PubMed  CAS  Google Scholar 

  27. Chen J, Regan RF. Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin. Biochem Biophys Res Commun. 2004;318:88–94.

    Article  PubMed  CAS  Google Scholar 

  28. Chen-Roetling J, Benvenisti-Zarom L, Regan RF. Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. J Neurosci Res. 2005;82(6):802–10.

    Article  PubMed  CAS  Google Scholar 

  29. Cable H, Lloyd JB. Cellular uptake and release of two contrasting iron chelators. J Pharm Pharmacol. 1999;51(2):131–4.

    Article  PubMed  CAS  Google Scholar 

  30. Nunez MT, Cole ES, Glass J. The reticulocyte plasma membrane pathway of iron uptake as determined by the mechanism of alpha, alpha'-dipyridyl inhibition. J Biol Chem. 1983;258(2):1146–51.

    PubMed  CAS  Google Scholar 

  31. Martens LK, Kirschner KM, Warnecke C, Scholz H. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem. 2007;282(19):14379–88. doi:10.1074/jbc.M609857200.

    Article  PubMed  CAS  Google Scholar 

  32. Methy D, Bertrand N, Prigent-Tessier A, Mossiat C, Stanimirovic D, Beley A, et al. Beneficial effect of dipyridyl, a liposoluble iron chelator against focal cerebral ischemia: in vivo and in vitro evidence of protection of cerebral endothelial cells. Brain Res. 2008;1193:136–42. doi:10.1016/j.brainres.2007.11.063.

    Article  PubMed  CAS  Google Scholar 

  33. Xi GH, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by a grant from the National Institutes of Health (NS42273) to RFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond F. Regan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen-Roetling, J., Sinanan, J. & Regan, R.F. Effect of Iron Chelators on Methemoglobin and Thrombin Preconditioning. Transl. Stroke Res. 3, 452–459 (2012). https://doi.org/10.1007/s12975-012-0195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0195-4

Keywords

Navigation