Skip to main content
Log in

Clinical use of physiological lesion assessment using pressure guidewires: an expert consensus document of the Japanese Association of Cardiovascular Intervention and Therapeutics

  • Expert Consensus Document
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2020

This article has been updated

Abstract

In this document, the background, concept, and current evidence are briefly summarized. The focus is on the clinical application of physiological lesion assessment from a practical standpoint for facilities that do not have ample experience. Finally, the characteristics of new resting indexes are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Adapted with permission from Jang et al. [27]

Fig. 3
Fig. 4

Adapted with permission from Sen et al. [58]

Fig. 5

Adapted with permission from Lee et al. [64]

Fig. 6

Adapted with permission from Nijjer et al. [66]

Similar content being viewed by others

Change history

  • 07 July 2020

    In the original publication of the article, author group affiliation was published incorrectly. The correct affiliation for author group is given in this correction.

References

  1. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    CAS  PubMed  Google Scholar 

  2. Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376:1824–34.

    PubMed  Google Scholar 

  3. Gotberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376:1813–23.

    PubMed  Google Scholar 

  4. Hoffman JI. Maximal coronary flow and the concept of coronary vascular reserve. Circulation. 1984;70:153–9.

    CAS  PubMed  Google Scholar 

  5. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation. 1987;76:1183–9.

    CAS  PubMed  Google Scholar 

  6. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–93.

    CAS  PubMed  Google Scholar 

  7. De Bruyne B, Paulus WJ, Pijls NH. Rationale and application of coronary transstenotic pressure gradient measurements. Cathet Cardiovasc Diagn. 1994;33:250–61.

    PubMed  Google Scholar 

  8. Berry C, van ‘t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, et al. VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): a multicenter study in consecutive patients. J Am Coll Cardiol. 2013;61:1421–7.

    PubMed  Google Scholar 

  9. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.

    CAS  PubMed  Google Scholar 

  10. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    PubMed  Google Scholar 

  11. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–54.

    PubMed  Google Scholar 

  12. Lam MK, Sen H, Tandjung K, Lowik MM, Basalus MW, Mewes JC, et al. Clinical outcome of patients with implantation of second-generation drug-eluting stents in the right coronary ostium: insights from 2-year follow-up of the TWENTE trial. Catheter Cardiovasc Interv. 2015;85:524–31.

    PubMed  Google Scholar 

  13. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.

    PubMed  Google Scholar 

  14. Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.

    CAS  PubMed  Google Scholar 

  15. Valgimigli M, Tebaldi M, Borghesi M, Vranckx P, Campo G, Tumscitz C, et al. Two-year outcomes after first- or second-generation drug-eluting or bare-metal stent implantation in all-comer patients undergoing percutaneous coronary intervention: a pre-specified analysis from the PRODIGY study (PROlonging Dual Antiplatelet Treatment After Grading stent-induced Intimal hyperplasia studY). JACC Cardiovasc Interv. 2014;7:20–8.

    PubMed  Google Scholar 

  16. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105–11.

    PubMed  Google Scholar 

  17. Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36:3182–8.

    PubMed  Google Scholar 

  18. Tanaka N, Nakamura M, Akasaka T, Kadota K, Uemura S, Amano T, et al. One- year outcome of fractional flow reserve-based coronary intervention in Japanese daily practice- CVIT-DEFER Registry. Circ J. 2017;81:1301–6.

    PubMed  Google Scholar 

  19. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    CAS  PubMed  Google Scholar 

  20. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2018. https://doi.org/10.1093/ejcts/ezy289.

    Article  PubMed  Google Scholar 

  21. Botman CJ, Schonberger J, Koolen S, Penn O, Botman H, Dib N, et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg. 2007;83:2093–7.

    PubMed  Google Scholar 

  22. Fournier S, Toth GG, De Bruyne B, Johnson NP, Ciccarelli G, Xaplanteris P, et al. Six- year follow-up of fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circ Cardiovasc Interv. 2018;11:e006368.

    PubMed  Google Scholar 

  23. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–67.

    CAS  PubMed  Google Scholar 

  24. Toth GG, Johnson NP, Jeremias A, Pellicano M, Vranckx P, Fearon WF, et al. Standardization of fractional flow reserve measurements. J Am Coll Cardiol. 2016;68:742–53.

    PubMed  Google Scholar 

  25. Moriyama N, Yamanaka F, Shishido K, Tobita K, Yokota S, Hayashi T, et al. The COFFEE Trial (COmparison of Fractional Flow Reserve Measurements through 4 FrEnch versus 6 FrEnch Diagnostic Catheter). JACC Cardiovasc Interv. 2018;11:414–6.

    PubMed  Google Scholar 

  26. Inoue F, Hashimoto T, Fujimoto S, Uemura S, Kawamoto A, Dohi K. Estimation of coronary flow reserve by intracoronary administration of nicorandil: comparison with intracoronary administration of papaverine. Heart Vessels. 1998;13:229–36.

    CAS  PubMed  Google Scholar 

  27. Jang HJ, Koo BK, Lee HS, Park JB, Kim JH, Seo MK, et al. Safety and efficacy of a novel hyperaemic agent, intracoronary nicorandil, for invasive physiological assessments in the cardiac catheterization laboratory. Eur Heart J. 2013;34:2055–62.

    CAS  PubMed  Google Scholar 

  28. Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation. 1986;73:444–51.

    CAS  PubMed  Google Scholar 

  29. Nakayama M, Tanaka N, Sakoda K, Hokama Y, Hoshino K, Kimura Y, et al. Papaverine-induced polymorphic ventricular tachycardia during coronary flow reserve study of patients with moderate coronary artery disease. Circ J. 2015;79:530–6.

    PubMed  Google Scholar 

  30. De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, et al. Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107:1877–83.

    PubMed  Google Scholar 

  31. Oi M, Toyofuku M, Matsumura Y, Motohashi Y, Takahashi K, Kawase Y, et al. Utility of nicorandil for the measurement of coronary fractional flow reserve. Cardiovasc Interv Ther. 2014;29:24–30.

    CAS  PubMed  Google Scholar 

  32. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.

    PubMed  Google Scholar 

  33. Koo BK, Kang HJ, Youn TJ, Chae IH, Choi DJ, Kim HS, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46:633–7.

    PubMed  Google Scholar 

  34. Nakamura M, Yamagishi M, Ueno T, Hara K, Ishiwata S, Itoh T, et al. Prevalence of visual-functional mismatch regarding coronary artery stenosis in the CVIT-DEFER registry. Cardiovasc Interv Ther. 2014;29:300–8.

    PubMed  Google Scholar 

  35. Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–12.

    PubMed  Google Scholar 

  36. Lee JM, Koo BK, Shin ES, Nam CW, Doh JH, Hu X, et al. Clinical outcomes of deferred lesions with angiographically insignificant stenosis but low fractional flow reserve. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.117.006071.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Belle E, Gil R, Klauss V, Balghith M, Meuwissen M, Clerc J, et al. Impact of routine invasive physiology at time of angiography in patients with multivessel coronary artery disease on reclassification of revascularization strategy: results from the DEFINE REAL study. JACC Cardiovasc Interv. 2018;11:354–65.

    PubMed  Google Scholar 

  38. Yamanaka F, Shishido K, Ochiai T, Moriyama N, Yamazaki K, Sugitani A, et al. Instantaneous wave-free ratio for the assessment of intermediate coronary artery stenosis in patients with severe aortic valve stenosis: comparison with myocardial perfusion scintigraphy. JACC Cardiovasc Interv. 2018;11:2032–40.

    PubMed  Google Scholar 

  39. Cuculi F, De Maria GL, Meier P, Dall’Armellina E, de Caterina AR, Channon KM, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1894–904.

    PubMed  Google Scholar 

  40. Ntalianis A, Sels JW, Davidavicius G, Tanaka N, Muller O, Trana C, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2010;3:1274–81.

    PubMed  Google Scholar 

  41. Lee JM, Kim HK, Lim KS, Park JK, Choi KH, Park J, et al. Influence of local myocardial damage on index of microcirculatory resistance and fractional flow reserve in target and nontarget vascular territories in a porcine microvascular injury model. JACC Cardiovasc Interv. 2018;11:717–24.

    PubMed  Google Scholar 

  42. De Bruyne B, Pijls NH, Bartunek J, Kulecki K, Bech JW, De Winter H, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation. 2001;104:157–62.

    PubMed  Google Scholar 

  43. Sels JW, Tonino PA, Siebert U, Fearon WF, Van’t Veer M, De Bruyne B, et al. Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv. 2011;4:1183–9.

    PubMed  Google Scholar 

  44. Nam J, Briggs A, Layland J, Oldroyd KG, Curzen N, Sood A, et al. Fractional flow reserve (FFR) versus angiography in guiding management to optimise outcomes in non-ST segment elevation myocardial infarction (FAMOUS-NSTEMI) developmental trial: cost-effectiveness using a mixed trial- and model-based methods. Cost Eff Resour Alloc. 2015;13:19.

    PubMed  PubMed Central  Google Scholar 

  45. Hakeem A, Edupuganti MM, Almomani A, Pothineni NV, Payne J, Abualsuod AM, et al. Long- term prognosis of deferred acute coronary syndrome lesions based on nonischemic fractional flow reserve. J Am Coll Cardiol. 2016;68:1181–91.

    PubMed  Google Scholar 

  46. Toth GG, De Bruyne B, Rusinaru D, Di Gioia G, Bartunek J, Pellicano M, et al. Impact of right atrial pressure on fractional flow reserve measurements: comparison of fractional flow reserve and myocardial fractional flow reserve in 1,600 coronary stenoses. JACC Cardiovasc Interv. 2016;9:453–9.

    PubMed  Google Scholar 

  47. Matsumoto H, Nakatsuma K, Shimada T, Ushimaru S, Mikuri M, Yamazaki T, et al. Effect of caffeine on intravenous adenosine-induced hyperemia in fractional flow reserve measurement. J Invasive Cardiol. 2014;26:580–5.

    PubMed  Google Scholar 

  48. Aminian A, Dolatabadi D, Lefebvre P, Khalil G, Zimmerman R, Michalakis G, et al. Importance of guiding catheter disengagement during measurement of fractional flow reserve in patients with an isolated proximal left anterior descending artery stenosis. Catheter Cardiovasc Interv. 2015;85:595–601.

    PubMed  Google Scholar 

  49. Pijls NH, Bruyne BD. Fractional flow reserve, coronary pressure wires, and drift. Circ J. 2016;80:1704–6.

    PubMed  Google Scholar 

  50. Wakasa N, Kuramochi T, Mihashi N, Terada N, Kanaji Y, Murai T, et al. Impact of pressure signal drift on fractional flow reserve-based decision-making for patients with intermediate coronary artery stenosis. Circ J. 2016;80:1812–9.

    PubMed  Google Scholar 

  51. Ahn JM, Park DW, Shin ES, Koo BK, Nam CW, Doh JH, et al. Fractional flow reserve and cardiac events in coronary artery disease: data from a prospective IRIS-FFR Registry (Interventional Cardiology Research Incooperation Society Fractional Flow Reserve). Circulation. 2017;135:2241–51.

    PubMed  Google Scholar 

  52. Kikuta Y, Cook CM, Sharp ASP, Salinas P, Kawase Y, Shiono Y, et al. Pre-angioplasty instantaneous wave-free ratio pullback predicts hemodynamic outcome in humans with coronary artery disease: primary results of the international multicenter iFR GRADIENT Registry. JACC Cardiovasc Interv. 2018;11:757–67.

    PubMed  Google Scholar 

  53. Kawase Y, Kawasaki M, Kikuchi J, Hirata T, Okamoto S, Tanigaki T, et al. Residual pressure gradient across the implanted stent: an important factor of post-PCI physiological results. J Cardiol. 2018;71:458–63.

    PubMed  Google Scholar 

  54. Balla C, Pavasini R, Ferrari R. Treatment of angina: where are we? Cardiology. 2018;140:52–67.

    CAS  PubMed  Google Scholar 

  55. Yamashita J, Tanaka N, Shindo N, Ogawa M, Kimura Y, Sakoda K, et al. Seven-year clinical outcomes of patients with moderate coronary artery stenosis after deferral of revascularization based on gray-zone fractional flow reserve. Cardiovasc Interv Ther. 2015;30:209–15.

    PubMed  Google Scholar 

  56. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, et al. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006;113:1768–78.

    PubMed  Google Scholar 

  57. Siebes M, Kolyva C, Verhoeff BJ, Piek JJ, Spaan JA. Potential and limitations of wave intensity analysis in coronary arteries. Med Biol Eng Comput. 2009;47:233–9.

    PubMed  Google Scholar 

  58. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol. 2012;59:1392–402.

    CAS  PubMed  Google Scholar 

  59. Escaned J, Echavarria-Pinto M, Garcia-Garcia HM, van de Hoef TP, de Vries T, Kaul P, et al. Prospective assessment of the diagnostic accuracy of instantaneous wave-free ratio to assess coronary stenosis relevance: results of ADVISE II international, multicenter study (ADenosine Vasodilator Independent Stenosis Evaluation II). JACC Cardiovasc Interv. 2015;8:824–33.

    PubMed  Google Scholar 

  60. Petraco R, Al-Lamee R, Gotberg M, Sharp A, Hellig F, Nijjer SS, et al. Real-time use of instantaneous wave-free ratio: results of the ADVISE in-practice: an international, multicenter evaluation of instantaneous wave-free ratio in clinical practice. Am Heart J. 2014;168:739–48.

    PubMed  PubMed Central  Google Scholar 

  61. Cook CM, Jeremias A, Petraco R, Sen S, Nijjer S, Shun-Shin MJ, et al. Fractional flow reserve/instantaneous wave-free ratio discordance in angiographically intermediate coronary stenoses: an analysis using doppler-derived coronary flow measurements. JACC Cardiovasc Interv. 2017;10:2514–24.

    PubMed  PubMed Central  Google Scholar 

  62. Akasaka T, Yamamuro A, Kamiyama N, Koyama Y, Akiyama M, Watanabe N, et al. Assessment of coronary flow reserve by coronary pressure measurement: comparison with flow- or velocity-derived coronary flow reserve. J Am Coll Cardiol. 2003;41:1554–60.

    PubMed  Google Scholar 

  63. Lee JM, Shin ES, Nam CW, Doh JH, Hwang D, Park J, et al. Discrepancy between fractional flow reserve and instantaneous wave-free ratio: clinical and angiographic characteristics. Int J Cardiol. 2017;245:63–8.

    PubMed  Google Scholar 

  64. Lee JM, Shin ES, Nam CW, Doh JH, Hwang D, Park J, et al. Clinical outcomes according to fractional flow reserve or instantaneous wave-free ratio in deferred lesions. JACC Cardiovasc Interv. 2017;10:2502–10.

    PubMed  Google Scholar 

  65. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87–94.

    CAS  PubMed  Google Scholar 

  66. Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE. The Instantaneous wave-Free Ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med. 2015;16:167–71.

    PubMed  Google Scholar 

  67. De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101:1840–7.

    PubMed  Google Scholar 

  68. Kawase Y, Omori H, Kawasaki M, Tanigaki T, Hirata T, Okamoto S, et al. Postocclusional hyperemia for fractional flow reserve after percutaneous coronary intervention. Circ Cardiovasc Interv. 2017;10:e005674. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005674.

    Article  PubMed  Google Scholar 

  69. Van’t Veer M, Pijls NHJ, Hennigan B, Watkins S, Ali ZA, De Bruyne B, et al. Comparison of different diastolic resting indexes to iFR: are they all equal? J Am Coll Cardiol. 2017;70:3088–96.

    PubMed  Google Scholar 

  70. Svanerud J, Ahn JM, Jeremias A, van’t Veer M, Gore A, Maehara A, et al. Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the Resting Full-cycle Ratio (VALIDATE RFR) study. EuroIntervention. 2018;14:806–14.

    PubMed  Google Scholar 

  71. Kojima S, Ishikawa S, Ohsawa K, Mori H. Determination of effective and safe dose for intracoronary administration of nicorandil in dogs. Cardiovasc Res. 1990;24:727–32.

    CAS  PubMed  Google Scholar 

  72. Miyazaki T, Moritani K, Miyoshi S, Asanagi M, Zhao LS, Mitamura H, et al. Nicorandil augments regional ischemia-induced monophasic action potential shortening and potassium accumulation without serious proarrhythmia. J Cardiovasc Pharmacol. 1995;26:949.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kawase.

Ethics declarations

Conflict of interest

Yoshiaki Kawase received payment for lectures from Boston Scientific Japan, Hitoshi Matsuo received payment for lectures from Boston Scientific Japan, Phillips Japan, and Abott Vascular Japan, Takashi Akasaka received payment for lectures from St. Jude Medical, received grants/research support from St. Jude Medical, ACIST Medical Systems Japan, Abott vascular Japan, and Boston Scientific Japan, Yasutsugu Shiono received payment for lectures from Philips Japan, received grants/research support from St. Jude Medical, and ACIST Medical Systems Japan, Nobuhiro Tanaka received payment for lectures from Boston Scientific Japan and Abott Vascular Japan, Tetsuya Amano received grants/research support from Abott Vascular Japan and Boston Scientific Japan, Ken Kozuma received payment for lectures from Abott Vascular Japan, received grants/research support from Abott Vascular Japan, Masato Nakamura received payment for lectures from Abott vascular Japan, Phillips Japan, and Zeon Medical, Hiroyoshi Yokoi received payment for lectures from Boston Scientific Japan, Yoshio Kobayashi received research grant/research support from Abbott Vascular Japan, Yuji Ikari received grants/research support from Boston Scientific Japan and St. Jude Medical.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawase, Y., Matsuo, H., Akasaka, T. et al. Clinical use of physiological lesion assessment using pressure guidewires: an expert consensus document of the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv and Ther 34, 85–96 (2019). https://doi.org/10.1007/s12928-018-0559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-018-0559-0

Keywords

Navigation