Skip to main content
Log in

FFR and iFR guided percutaneous coronary intervention

  • Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Fractional flow reserve (FFR) is an invasive physiologic index measured in the cardiac catheterization laboratory to assess the functional significance of a coronary stenosis. It is now accepted as the reference standard to indicate whether a stenosis is likely to be responsible for ischemia. It is generally accepted that a stenosis with an ischemic value of FFR is responsible for symptom and a worse outcome and should be revascularized, whereas lesions with a non-ischemic FFR have a more favorable prognosis and can be treated medically. Furthermore, FFR-guided revascularization strategy has been definitely proven to be better than angiography-guided strategy in pivotal landmark studies such as DEFER, FAME, and FAME2. Instantaneous wave-free ratio (iFR) is another physiological index which can be obtained at rest without hyperemic stimulation. iFR is conceptually different from FFR, leading to lively scientific debate about this index. In this review article, the concept, clinical value of FFR and iFR for clinical practice are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted with permission from Sen et al. [5]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  2. Iwasaki K. Myocardial ischemia is a key factor in the management of stable coronary artery disease. World J Cardiol. 2014;6:130–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pijls NHJ. Fractional flow reserve to guide coronary revascularization. Circ J. 2013;77:561–9.

    Article  PubMed  Google Scholar 

  4. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, De Bruyne B, Investigators FS. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

    Article  PubMed  Google Scholar 

  5. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol. 2012;59:1392–402.

    Article  CAS  PubMed  Google Scholar 

  6. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, El Gamal MI. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–93.

    Article  CAS  PubMed  Google Scholar 

  7. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94:1842–9.

    Article  PubMed  Google Scholar 

  8. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.

    Article  CAS  PubMed  Google Scholar 

  9. Matsuo H. Microvascular dysfunction: clinically relevant but still difficult to detect. Circ J. 2013;77:1687–8.

    Article  CAS  PubMed  Google Scholar 

  10. van de Hoef TP, van Lavieren MA, Henriques JP, Piek JJ, Claessen BE. Fractional flow reserve-guided percutaneous coronary intervention: does coronary pressure never lie? Curr Treat Options Cardiovasc Med. 2014;16:294.

    Article  PubMed  Google Scholar 

  11. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SA, Voskuil M, Henriques JP, Koch KT, de Winter RJ, Spaan JA, Siebes M, Tijssen JG, Meuwissen M, Piek JJ. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7:301–11.

    Article  PubMed  Google Scholar 

  12. van der Voort PH, van Hagen E, Hendrix G, van Gelder B, Bech JW, Pijls NH. Comparison of intravenous adenosine to intracoronary papaverine for calculation of pressure-derived fractional flow reserve. Cathet Cardiovasc Diagn. 1996;39:120–5.

    Article  PubMed  Google Scholar 

  13. Nishi T, Kitahara H, Iwata Y, Fujimoto Y, Nakayama T, Takahara M, Sugimoto K and Kobayashi Y. Efficacy of combined administration of intracoronary papaverine plus intravenous adenosine 5′-triphosphate in assessment of fractional flow reserve. J Cardiol. 2016. doi:10.1016/j.jjcc.2015.12.005.

    Google Scholar 

  14. De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, Heyndrickx GR. Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107:1877–83.

    Article  PubMed  Google Scholar 

  15. Hakeem A, Cilingiroglu M, Leesar MA. Hemodynamic and intravascular ultrasound assessment of myocardial bridging: fractional flow reserve paradox with dobutamine versus adenosine. Catheter Cardiovasc Interv. 2010;75:229–36.

    Article  PubMed  Google Scholar 

  16. Yoshino S, Cassar A, Matsuo Y, Herrmann J, Gulati R, Prasad A, Lennon RJ, Lerman LO, Lerman A. Fractional flow reserve with dobutamine challenge and coronary microvascular endothelial dysfunction in symptomatic myocardial bridging. Circ J. 2014;78:685–92.

    Article  CAS  PubMed  Google Scholar 

  17. Kato D, Takashima H, Waseda K, Kurita A, Kuroda Y, Kosaka T, Kuhara Y, Ando H, Maeda K, Kumagai S, Sakurai S, Suzuki A, Toda Y, Watanabe A, Sato S, Fujimoto M, Mizuno T, Amano T. Feasibility and safety of intracoronary nicorandil infusion as a novel hyperemic agent for fractional flow reserve measurements. Heart Vessels. 2015;30:477–83.

    Article  PubMed  Google Scholar 

  18. Tanaka N, Takahashi Y, Ishihara H, Kawakami T, Ono H. Usefulness and safety of intracoronary administration of nicorandil for evaluating fractional flow reserve in Japanese patients. Clin Cardiol. 2015;38:20–4.

    Article  PubMed  Google Scholar 

  19. Pijls NH, van Nunen LX. Fractional flow reserve, maximum hyperemia, adenosine, and regadenoson. Cardiovasc Revasc Med. 2015;16:263–5.

    Article  PubMed  Google Scholar 

  20. van Nunen LX, Lenders GD, Schampaert S, van’t Veer M, Wijnbergen I, Brueren GR, Tonino PA, Pijls NH. Single bolus intravenous regadenoson injection versus central venous infusion of adenosine for maximum coronary hyperaemia in fractional flow reserve measurement. Eurointervention. 2015;11:905–13.

    Article  PubMed  Google Scholar 

  21. Pijls NH. Optimum guidance of complex PCI by coronary pressure measurement. Heart. 2004;90:1085–93.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tarkin JM, Nijjer S, Sen S, Petraco R, Echavarria-Pinto M, Asress KN, Lockie T, Khawaja MZ, Mayet J, Hughes AD, Malik IS, Mikhail GW, Baker CS, Foale RA, Redwood S, Francis DP, Escaned J, Davies JE. Hemodynamic response to intravenous adenosine and its effect on fractional flow reserve assessment: results of the Adenosine for the Functional Evaluation of Coronary Stenosis Severity (AFFECTS) study. Circ Cardiovasc Interv. 2013;6:654–61.

    Article  CAS  PubMed  Google Scholar 

  23. Seto AH, Tehrani DM, Bharmal MI, Kern MJ. Variations of coronary hemodynamic responses to intravenous adenosine infusion: implications for fractional flow reserve measurements. Catheter Cardiovasc Interv. 2014;84:416–25.

    Article  PubMed  Google Scholar 

  24. Gould KL, Lipscomb K, Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction < resting flow by gould. Circulation. 1975;51:1085–94.

    Article  CAS  PubMed  Google Scholar 

  25. Chamuleau SAJ, Siebes M, Meuwissen M, Koch KT, Spaan JAE, Piek JJ. Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. Am J Physiol Heart Circ Physiol. 2003;285:H2194–200.

    Article  CAS  PubMed  Google Scholar 

  26. Echavarria-Pinto M, Gonzalo N, Ibanez B, Petraco R, Jimenez-Quevedo P, Sen S, Nijjer S, Tarkin J, Alfonso F, Nunez-Gil IJ, Banuelos C, Quiros A, Fernandez-Ortiz A, Macaya C, Koo BK, Davies J, Escaned J. Low coronary microcirculatory resistance associated with profound hypotension during intravenous adenosine infusion: implications for the functional assessment of coronary stenoses. Circ Cardiovasc Interv. 2014;7:35–42.

    Article  CAS  PubMed  Google Scholar 

  27. Johnson NP, Johnson DT, Kirkeeide RL, Berry C, De Bruyne B, Fearon WF, Oldroyd KG, Pijls NH, Gould KL. Repeatability of fractional flow reserve despite variations in systemic and coronary hemodynamics. JACC Cardiovasc Interv. 2015;8:1018–27.

    Article  PubMed  Google Scholar 

  28. Matsumoto H, Nakatsuma K, Shimada T, Ushimaru S, Mikuri M, Yamazaki T, Matsuda T. Effect of caffeine on intravenous adenosine-induced hyperemia in fractional flow reserve measurement. J Invasive Cardiol. 2014;26:580–5.

    PubMed  Google Scholar 

  29. Matsumoto H, Ushimaru S, Matsuda T, Shimada T, Mikuri M, Takahashi H, Takahashi N, Kawada T, Yamazaki T. Is caffeine abstention necessary before adenosine-induced fractional flow reserve measurement? J Am Coll Cardiol. 2015;66:1943–5.

    Article  PubMed  Google Scholar 

  30. Sun YH, Anderson TJ, Parker KH, Tyberg JV. Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol. 1985;2000(89):1636–44.

    Google Scholar 

  31. Siebes M, Kolyva C, Verhoeff BJ, Piek JJ, Spaan JA. Potential and limitations of wave intensity analysis in coronary arteries. Med Biol Eng Comput. 2009;47:233–9.

    Article  PubMed  Google Scholar 

  32. Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res. 1978;43:242–53.

    Article  CAS  PubMed  Google Scholar 

  33. Nijjer SS, de Waard GA, Sen S, van de Hoef TP, Petraco R, Echavarria-Pinto M, van Lavieren MA, Meuwissen M, Danad I, Knaapen P, Escaned J, Piek JJ, Davies JE, van Royen N. Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian-Dutch-English (IDEAL) collaborators. Eur Heart J. 2015. doi:10.1093/eurheartj/ehv626.

    PubMed  Google Scholar 

  34. Sen S, Asrress KN, Nijjer S, Petraco R, Malik IS, Foale RA, Mikhail GW, Foin N, Broyd C, Hadjiloizou N, Sethi A, Al-Bustami M, Hackett D, Khan MA, Khawaja MZ, Baker CS, Bellamy M, Parker KH, Hughes AD, Francis DP, Mayet J, Di Mario C, Escaned J, Redwood S, Davies JE. Diagnostic classification of the instantaneous wave-free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (Classification Accuracy of Pressure-Only Ratios Against Indices Using Flow Study). J Am Coll Cardiol. 2013;61:1409–20.

    Article  PubMed  Google Scholar 

  35. Nakamura M, Yamagishi M, Ueno T, Hara K, Ishiwata S, Itoh T, Hamanaka I, Wakatsuki T, Sugano T, Kawai K, Akasaka T, Tanaka N, Kimura T. Prevalence of visual-functional mismatch regarding coronary artery stenosis in the CVIT-DEFER registry. Cardiovasc Interv Ther. 2014;29:300–8.

    Article  PubMed  Google Scholar 

  36. Park SJ, Kang SJ, Ahn JM, Shim EB, Kim YT, Yun SC, Song H, Lee JY, Kim WJ, Park DW, Lee SW, Kim YH, Lee CW, Mintz GS, Park SW. Visual-functional mismatch between coronary angiography and fractional flow reserve. JACC Cardiovasc Interv. 2012;5:1029–36.

    Article  PubMed  Google Scholar 

  37. Natsumeda M, Nakazawa G, Murakami T, Torii S, Ijichi T, Ohno Y, Masuda N, Shinozaki N, Ogata N, Yoshimachi F, Ikari Y. Coronary angiographic characteristics that influence fractional flow reserve. Circ J. 2015;79:802–7.

    Article  PubMed  Google Scholar 

  38. Takashima H, Waseda K, Gosho M, Kurita A, Ando H, Sakurai S, Maeda K, Kumagai S, Suzuki A, Amano T. Severity of morphological lesion complexity affects fractional flow reserve in intermediate coronary stenosis. J Cardiol. 2015;66:239–45.

    Article  PubMed  Google Scholar 

  39. Shiono Y, Kubo T, Tanaka A, Kitabata H, Ino Y, Tanimoto T, Wada T, Ota S, Ozaki Y, Orii M, Shimamura K, Ishibashi K, Yamano T, Yamaguchi T, Hirata K, Imanishi T, Akasaka T. Impact of myocardial supply area on the transstenotic hemodynamics as determined by fractional flow reserve. Catheter Cardiovasc Interv. 2014;84:406–13.

    Article  PubMed  Google Scholar 

  40. Matsuo H, Kawase Y. Physiological impact of CTO recanalization assessed by coronary pressure measurement: a case report. Catheter Cardiovasc Interv. 2013;82:E459–64.

    PubMed  Google Scholar 

  41. Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, Erbel R, Legrand V, Gwon HC, Remkes WS, Stella PR, van Schaardenburgh P, Bech GJ, De Bruyne B, Pijls NH. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36:3182–8.

    Article  PubMed  Google Scholar 

  42. Nakamura M, Yamagishi M, Ueno T, Hara K, Ishiwata S, Itoh T, Hamanaka I, Wakatsuki T, Sugano T, Kawai K, Akasaka T, Tanaka N, Kimura T. Modification of treatment strategy after FFR measurement: CVIT-DEFER registry. Cardiovasc Interv Ther. 2015;30:12–21.

    Article  PubMed  Google Scholar 

  43. Curzen N, Rana O, Nicholas Z, Golledge P, Zaman A, Oldroyd K, Hanratty C, Banning A, Wheatcroft S, Hobson A, Chitkara K, Hildick-Smith D, McKenzie D, Calver A, Dimitrov BD, Corbett S. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv. 2014;7:248–55.

    Article  PubMed  Google Scholar 

  44. Van Belle E, Rioufol G, Pouillot C, Cuisset T, Bougrini K, Teiger E, Champagne S, Belle L, Barreau D, Hanssen M, Besnard C, Dauphin R, Dallongeville J, El Hahi Y, Sideris G, Bretelle C, Lhoest N, Barnay P, Leborgne L, Dupouy P, Investigators of the Registre Francais de la F-RF. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: insights from a large French multicenter fractional flow reserve registry. Circulation. 2014;129:173–85.

    Article  PubMed  Google Scholar 

  45. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Mobius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engstrom T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Juni P, Fearon WF, Investigators FT. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    Article  PubMed  Google Scholar 

  46. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engstrom T, Oldroyd K, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Limacher A, Nuesch E, Juni P, Investigators FT. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  PubMed  Google Scholar 

  47. Shiono Y, Kubo T, Tanaka A, Ino Y, Yamaguchi T, Tanimoto T, Yamano T, Matsuo Y, Nishiguchi T, Teraguchi I, Ota S, Ozaki Y, Orii M, Shimamura K, Kitabata H, Hirata K, Imanishi T, Akasaka T. Long-term outcome after deferral of revascularization in patients with intermediate coronary stenosis and gray-zone fractional flow reserve. Circ J. 2015;79:91–5.

    Article  PubMed  Google Scholar 

  48. Yamashita J, Tanaka N, Shindo N, Ogawa M, Kimura Y, Sakoda K, Murata N, Hokama Y, Hoshino K, Ikeda S, Yamashina A. Seven-year clinical outcomes of patients with moderate coronary artery stenosis after deferral of revascularization based on gray-zone fractional flow reserve. Cardiovasc Interv Ther. 2015;30:209–15.

    Article  PubMed  Google Scholar 

  49. Park SH, Jeon KH, Lee JM, Nam CW, Doh JH, Lee BK, Rha SW, Yoo KD, Jung KT, Cho YS, Lee HY, Youn TJ, Chung WY, Koo BK. Long-term clinical outcomes of fractional flow reserve-guided versus routine drug-eluting stent implantation in patients with intermediate coronary stenosis: five-year clinical outcomes of DEFER-DES trial. Circ Cardiovasc Interv. 2015;8(12):e002442. doi:10.1161/CIRCINTERVENTIONS.115.002442.

    Article  CAS  PubMed  Google Scholar 

  50. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, Investigators FS. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  51. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.

    Article  PubMed  Google Scholar 

  52. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, Appelman Y, Arslan F, Barbato E, Chen SL, Di Serafino L, Dominguez-Franco AJ, Dupouy P, Esen AM, Esen OB, Hamilos M, Iwasaki K, Jensen LO, Jimenez-Navarro MF, Katritsis DG, Kocaman SA, Koo BK, Lopez-Palop R, Lorin JD, Miller LH, Muller O, Nam CW, Oud N, Puymirat E, Rieber J, Rioufol G, Rodes-Cabau J, Sedlis SP, Takeishi Y, Tonino PA, Van Belle E, Verna E, Werner GS, Fearon WF, Pijls NH, De Bruyne B, Gould KL. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–54.

    Article  PubMed  Google Scholar 

  53. Petraco R, Escaned J, Sen S, Nijjer S, Asrress KN, Echavarria-Pinto M, Lockie T, Khawaja MZ, Cuevas C, Foin N, Broyd C, Foale RA, Hadjiloizou N, Malik IS, Mikhail GW, Sethi A, Kaprielian R, Baker CS, Lefroy D, Bellamy M, Al-Bustami M, Khan MA, Hughes AD, Francis DP, Mayet J, Di Mario C, Redwood S, Davies JE. Classification performance of instantaneous wave-free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: results of the ADVISE registry. Eurointervention. 2013;9:91–101.

    Article  PubMed  Google Scholar 

  54. Kim JS, Lee HD, Suh YK, Kim JH, Chun KJ, Park YH, Kim J, Han DC, Sohn CB. Prediction of fractional flow reserve without hyperemic induction based on resting baseline Pd/Pa. Korean Circ J. 2013;43:309–15.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Petraco R, Al-Lamee R, Gotberg M, Sharp A, Hellig F, Nijjer SS, Echavarria-Pinto M, van de Hoef TP, Sen S, Tanaka N, Van Belle E, Bojara W, Sakoda K, Mates M, Indolfi C, De Rosa S, Vrints CJ, Haine S, Yokoi H, Ribichini FL, Meuwissen M, Matsuo H, Janssens L, Katsumi U, Di Mario C, Escaned J, Piek J, Davies JE. Real-time use of instantaneous wave-free ratio: results of the ADVISE in-practice: an international, multicenter evaluation of instantaneous wave-free ratio in clinical practice. Am Heart J. 2014;168:739–48.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jeremias A, Maehara A, Genereux P, Asrress KN, Berry C, De Bruyne B, Davies JE, Escaned J, Fearon WF, Gould KL, Johnson NP, Kirtane AJ, Koo BK, Marques KM, Nijjer S, Oldroyd KG, Petraco R, Piek JJ, Pijls NH, Redwood S, Siebes M, Spaan JA, van’t Veer M, Mintz GS, Stone GW. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol. 2014;63:1253–61.

    Article  PubMed  Google Scholar 

  57. Petraco R, van de Hoef TP, Nijjer S, Sen S, van Lavieren MA, Foale RA, Meuwissen M, Broyd C, Echavarria-Pinto M, Foin N, Malik IS, Mikhail GW, Hughes AD, Francis DP, Mayet J, Di Mario C, Escaned J, Piek JJ, Davies JE. Baseline instantaneous wave-free ratio as a pressure-only estimation of underlying coronary flow reserve: results of the JUSTIFY-CFR Study (Joined Coronary Pressure and Flow Analysis to Determine Diagnostic Characteristics of Basal and Hyperemic Indices of Functional Lesion Severity-Coronary Flow Reserve). Circ Cardiovasc Interv. 2014;7:492–502.

    Article  PubMed  Google Scholar 

  58. Iwasaki K, Matsumoto T. Coronary pressure measurement identifies patients with diffuse coronary artery disease who benefit from coronary revascularization. Coron Artery Dis. 2011;22:81–6.

    Article  PubMed  Google Scholar 

  59. De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101:1840–7.

    Article  PubMed  Google Scholar 

  60. Saito N, Matsuo H, Kawase Y, Watanabe S, Bao B, Yamamoto E, Watanabe H, Nakatsuma K, Ueno K, Kimura T. In vitro assessment of mathematically-derived fractional flow reserve in coronary lesions with more than two sequential stenoses. J Invasive Cardiol. 2013;25:642–9.

    PubMed  Google Scholar 

  61. Park SJ, Ahn JM, Pijls NH, De Bruyne B, Shim EB, Kim YT, Kang SJ, Song H, Lee JY, Kim WJ, Park DW, Lee SW, Kim YH, Lee CW, Park SW. Validation of functional state of coronary tandem lesions using computational flow dynamics. Am J Cardiol. 2012;110:1578–84.

    Article  PubMed  Google Scholar 

  62. Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE. The instantaneous wave-free ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med. 2015;16:167–71.

    Article  PubMed  Google Scholar 

  63. Nijjer SS, Sen S, Petraco R, Escaned J, Echavarria-Pinto M, Broyd C, Al-Lamee R, Foin N, Foale RA, Malik IS, Mikhail GW, Sethi AS, Al-Bustami M, Kaprielian RR, Khan MA, Baker CS, Bellamy MF, Hughes AD, Mayet J, Francis DP, Di Mario C, Davies JE. Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease. JACC Cardiovasc Interv. 2014;7:1386–96.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Yumiko Hasegawa M. E at Gifu heart Center for her assistance with data acquisitions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Matsuo.

Ethics declarations

This article contains study with human participants performed by our institution.

Funding sources

No funding source was present about this article.

Disclosures

All the authors have nothing to disclose regarding this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, H., Kawase, Y. FFR and iFR guided percutaneous coronary intervention. Cardiovasc Interv and Ther 31, 183–195 (2016). https://doi.org/10.1007/s12928-016-0404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-016-0404-2

Keywords

Navigation