Skip to main content
Log in

Functional rice giant embryo and Aranghyangchal reduce blood glucose level and enhance antioxidative defense status in high fat-fed mice

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of functional rice giant embryo and Aranghyangchal on the glucose metabolism and antioxidative defense status in high fat-fed C57BL/6N mice were investigated. The animals were randomly divided into four dietary groups: normal control (NC), high fat (HF), and high fat supplemented with giant embryo rice (HF-GE) or Aranghyangchal rice (HF-AR). After 8 weeks of feeding them with experimental diets, the HF mice exhibited a marked increase in the blood glucose concentration, plasma insulin level, and lipid peroxidation and a significant decrease in the hepatic glycogen level relative to the NC group. On the other hand, diet supplementation of the rice samples suppressed this high fat diet-induced hyperglycemia and oxidative stress through inhibition of the glucose-regulating enzymes and activation of the antioxidant enzymes. These findings demonstrate that the giant embryo and Aranghyangchal rice may be beneficial as biomaterials in the development of functional food with hypoglycemic and antioxidative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H. Catalase. 1974. Method of Enzymatic Analysis, HU Bergmeyer, ed, Volume 2. Academic Press, New York, pp 673–684

    Article  Google Scholar 

  • Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. 1988. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal. Biochem. 173:185–189

    Article  PubMed  CAS  Google Scholar 

  • American Institute of Nutrition. 1977. Report of ad hoc committee on standards for nutritional studies. J. Nutr. 107:1340–1348

    Google Scholar 

  • AOAC. 2003. AOAC Official Methods of Analysis. Virginia: Association of official analytical chemists, Inc.

    Google Scholar 

  • Bentle LA, Lardy HA. 1976. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J. Biol. Chem. 251:2916–2921

    PubMed  CAS  Google Scholar 

  • Beyer P. 2010. Golden rice and ‘golden’ crops for human nutrition. New Biotechnol. 27:478–481

    Article  CAS  Google Scholar 

  • Bradford MM. 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Davidson AL, Arion WJ. 1987. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch. Biochem. Biophys. 253:156–167

    Article  PubMed  CAS  Google Scholar 

  • Hulcher FH, Oleson WH. 1973. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res. 14:625–631

    PubMed  CAS  Google Scholar 

  • Inzucchi SE. 2002. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. J. Am. Med. Assoc. 287:360–372

    Article  CAS  Google Scholar 

  • Lee YR, Kang MY, Nam SH. 2005. Effect of giant embryonic rice supplementation on the lipid peroxidation levels and antioxidative enzyme activities in the plasma and liver of streptozotocin-induced diabetic rats. J. Kor. Soc. Appl. Biol. Chem. 48:358–363

    CAS  Google Scholar 

  • Lee YR, Kim CE, Kang MY, Nam SH. 2007. Cholesterollowering and antioxidant status-improving efficacy of germinated giant embryonic rice (Oryza sativa L.) in high cholesterol-fed rats. Ann. Nutr. Metab. 51:519–526

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein AH, Schwab US. 2000. Relationship of dietary fat to glucose metabolism. Atherosclerosis 150:227–243

    Article  PubMed  CAS  Google Scholar 

  • Mackness MI, Arrol S, Durrington PN. 1991. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 286:152–154

    Article  PubMed  CAS  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB. 2003. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17:24–38

    Article  PubMed  CAS  Google Scholar 

  • ai]Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469–474

    Article  PubMed  Google Scholar 

  • McCord JM, Fridovich I. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Min B, Gu L, McClung AM, Bergman CJ, Chen MH. 2012. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 133:715–722

    Article  CAS  Google Scholar 

  • Mize CE, Langdon RG. 1952. Hepatic glutathione reductase, purification and general kinetic properties. J. Biol. Chem. 237:1589–1595

    Google Scholar 

  • Mullineaux PM, Creissen GP. 1997. Glutathione reductase: regulation and role in oxidative stress. In JG Scandalios, ed, Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, New York, pp 667–713

    Google Scholar 

  • Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST. 2005. The paraoxonase gene family and atherosclerosis. Free Radic. Biol. Med. 38:153–163

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Paglia ED, Valentine WN. 1967. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab Clin. Med. 70:158–169

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan D, Burkhardt S. 2002. Reactive oxygen and nitrogen species and cellular and organismal decline:amelioration with melatonin. Mech. Aging Dev. 123:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Seifter S, Dayton S, Navic B, Muntwyler E. 1950. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 25:191–200

    PubMed  CAS  Google Scholar 

  • Seo WD, Kim JY, Park DS, Han SI, Jang KC et al. 2011. Comparative analysis of physiochemicals and antioxidative properties of new giant embryo mutant, YR23517Acp79, in rice (Oryza sativa L.). J. Kor. Soc. Appl. Biol. Chem. 54:700–709

    Article  CAS  Google Scholar 

  • She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. 2000. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell Biol. 20:6508–6517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Schaftingen E, Gerin I. 2002. The glucose-6-phosphatase system. Biochem. J. 362:513–532

    Article  PubMed  PubMed Central  Google Scholar 

  • West IC. 2000. Radicals and oxidative stress in diabetes. Diabet. Med. 17:171–180

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Gu M, Meng X, Cheung SC, Yu H, Huang J, Sun Y, Shi Y, Liu Q. 2012. High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol. J. 10:353–362

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M.Y., Chung, S.I., Xu, M. et al. Functional rice giant embryo and Aranghyangchal reduce blood glucose level and enhance antioxidative defense status in high fat-fed mice. J. Crop Sci. Biotechnol. 17, 141–146 (2014). https://doi.org/10.1007/s12892-014-0068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0068-3

Key words

Navigation