Skip to main content

Advertisement

Log in

Characterization of the complete chloroplast genome of the endangered Przewalskia tangutica Maxim

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Przewalskia tangutica Maxim., an endangered medicinal species, is endemic to the Qinghai-Tibetan Plateau of China. In this study, we sequenced and characterized the chloroplast genome of P. tangutica for the first time. The P. tangutica chloroplast genome is 155,569 bp in length, exhibits a typical quadripartite structural organization, consisting of a LSC region of 86,707 bp, two IR regions of 25,287 bp and a SSC region of 18,288 bp. The genome contains 138 complete genes, including 85 protein-coding genes (85 PCG species), 44 tRNA genes (21 tRNA species) and eight rRNA genes (four rRNA species, rrn16S, rrn23S, rrn4.5 S, rrn5S). The most of gene species occur as a single copy, while 18 gene species occur in double copies including eight PCG species, six tRNA species (trnN, trnR, trnA, trnI, trnV, trnL) and all of rRNA species. Further, phylogenetic analysis indicated that P. tangutica clustered together with Scopolia parviflora, and formed a clade with Hyoscyamus niger in the Solanaceae. The whole chloroplast genome of P. tangutica not only provides important insight into conservation and restoration efforts for P. tangutica, but also plays a critical role in phylogenetic and evolution studies of the Solanaceae family. More importantly, it will contribute to the ongoing efforts for maintenance of existing genetic resource in the Qinghai-Tibet Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Hajrasouliha S, Massoumi AA, TaherNejadSattar SM, Hamdi M, Mehregan I (2014) A phylogenetic analysis ofHyoscyamus L. (Solanaceae) species from Iran based on ITS andtrn L-F sequence data. Jbes 5(1):647–654

    Google Scholar 

  • He L (1983) Ethnopharmacologic investigation on tropane-containing drugs in Chinese Solanaceous plants. J Eur Ceram Soc 8(1):1–18

    Google Scholar 

  • Huang DI, Cronk QC (2015) Plann: a command-line application for annotating plastome sequences. Appl Plant Sci 3(8):1500026

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41(w1):W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57(4):1159–1181

    Google Scholar 

  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2):327–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan D, Wang A, Wu G, Zhao C (2008) Isolation of polymorphic microsatellite markers from Przewalskia tangutica (Solanaceae). Conserv Genet 9(4):995–997

    Article  CAS  Google Scholar 

  • Wang H, Pan L, Zhang XF (2002) Quantitative analysis of three kinds of tropane alkalids in Hyoscyamus niger L. and Przewalskia tangutica Maxim. by HPLC. Northwest Pharm J 17(1):9–10

    CAS  Google Scholar 

  • Xiao P, He L (1982) Przewalskia tangutica –a tropane alkaloid-containing plant. Planta Medica 45(06):112–115

    Article  CAS  Google Scholar 

  • Yang YC (ed) (1991) Tibetan medicines. Qinghai People Press, Qinghai

    Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91331102, 31500502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanjun Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Fan, L., Lei, Z. et al. Characterization of the complete chloroplast genome of the endangered Przewalskia tangutica Maxim. Conservation Genet Resour 9, 409–413 (2017). https://doi.org/10.1007/s12686-017-0696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-017-0696-2

Keywords

Navigation