Skip to main content
Log in

Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The free radical 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4B-TEMPO) is active as an electrocatalyst for primary alcohol oxidations when immobilised at an electrode surface and immersed into an aqueous carbonate buffer solution. In order to improve the catalytic process, a composite film electrode is developed based on (i) carbon microparticles of 2–12 μm diameter to enhance charge transport and (ii) a polymer of intrinsic microporosity (here PIM-EA-TB with a BET surface area of 1027 m2 g−1). The latter acts as a highly rigid molecular framework for the embedded free radical catalyst with simultaneous access to aqueous phase and substrate. The resulting mechanism for the oxidation of primary alcohols is shown to switch in reaction order from first to zeroth with increasing substrate concentration consistent with a kinetically limited process with competing diffusion of charge at the polymer layer-electrode interface (here the “LEk” case in Albery-Hillman notation). Reactivity optimisation and screening for a wider range of primary alcohols in conjunction with DFT-based relative reactivity correlation reveals substrate hydrophobicity as an important factor for enhancing catalytic currents. The PIM-EA-TB host matrix is proposed to control substrate partitioning and thereby catalyst reactivity and selectivity.

The water-insoluble molecular alcohol oxidation catalyst 4-benzoyloxy-TEMPO is employed here embedded in a nano-composite film based on a hydrophobic polymer of intrinsic microporosity (PIM)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.A. Sheldon, Catal. Today 247, 4 (2015)

    Article  CAS  Google Scholar 

  2. N.B. McKeown, P.M. Budd, Chem. Soc. Rev. 35, 675 (2006)

    Article  CAS  Google Scholar 

  3. W.J. Albery, A.R. Hillman, J. Electroanal. Chem. 170, 27 (1984)

    Article  CAS  Google Scholar 

  4. J.M. Saveant, Chem. Rev. 108, 2348 (2008)

    Article  CAS  Google Scholar 

  5. R. Ciriminna, M. Pagliaro, Org. Process. Res. Dev. 14, 245 (2010)

    Article  CAS  Google Scholar 

  6. T. Vogler, A. Studer, Synthesis-Stuttgart 13, 1979 (2008)

    Google Scholar 

  7. K.U. Schoening, Chim. Oggi-Chem. Today 28, 18 (2010)

    Google Scholar 

  8. P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012)

    Article  CAS  Google Scholar 

  9. S. Eyley, W. Thielemans, Nanoscale 6, 7764 (2014)

    Article  CAS  Google Scholar 

  10. R.B. Grubbs, Polym. Rev. 51, 104 (2011)

    Article  CAS  Google Scholar 

  11. S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46 (2006)

    Article  CAS  Google Scholar 

  12. D.P. Hickey, M.S. McCammant, F. Giroud, M.S. Sigman, S.D. Minteer, J. Amer. Chem. Soc. 136, 15917 (2014)

    Article  CAS  Google Scholar 

  13. M. Gilhespy, M. Lok, X. Baucherel, Catal. Today 117, 114 (2006)

    Article  CAS  Google Scholar 

  14. R.A. Sheldon, I.W.C.E. Arends, G.T. Brink, A. Dijksman, Acc. Chem. Res. 25, 774 (2002)

    Article  Google Scholar 

  15. J.T. Hill-Cousins, J.K. Kuleshova, R.A. Green, P.R. Birkin, D. Pletcher, T.J. Underwood, S.G. Leach, R.C.D. Brown, ChemSusChem 5, 326 (2012)

    Article  CAS  Google Scholar 

  16. Y. Jin, K.J. Edler, F. Marken, J.L. Scott, Green Chem. 16, 3322 (2014)

    Article  CAS  Google Scholar 

  17. W.F. Bailey, J.M. Bobbitt, K.B. Wiberg, J. Org. Chem. 72, 4504 (2007)

    Article  CAS  Google Scholar 

  18. R.A. Green, J.T. Hill-Cousins, R.C.D. Brown, D. Pletcher, S.G. Leach, Electrochim. Acta 113, 550 (2013)

    Article  CAS  Google Scholar 

  19. J.L. Wang, M. Zhang, Z. Zheng, F.W. Yu, J.B. Ji, Chem. Eng. J. 229, 234 (2013)

    Article  CAS  Google Scholar 

  20. D.H. Hunter, D.H.R. Barton, W.B. Motherwell, Tetrahedron Lett. 25, 603 (1984)

    Article  CAS  Google Scholar 

  21. A. Israeli, M. Patt, M. Oron, A. Samuni, R. Kohen, S. Goldstein, Free Radic. Biol. Med. 38, 317 (2005)

    Article  CAS  Google Scholar 

  22. R. Ciriminna, G. Palmisano, M. Pagliaro, ChemCatChem 7, 552 (2015)

    Article  CAS  Google Scholar 

  23. P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Adv. Mater. 16, 456 (2004)

    Article  CAS  Google Scholar 

  24. P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Chem. Commun. 10, 230 (2004)

    Article  Google Scholar 

  25. M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, Science 339, 303 (2013)

    Article  CAS  Google Scholar 

  26. M. Carta, M. Croad, J.C. Jansen, P. Bernardo, G. Clarizia, N.B. McKeown, Polym. Chem. 5, 5255 (2014)

    Article  CAS  Google Scholar 

  27. M. Carta, M. Croad, R. Malpass-Evans, J.C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lanc, N.B. McKeown, Adv. Mater. 26, 3526 (2014)

    Article  CAS  Google Scholar 

  28. M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, M. Lee, I. Rose, N.B. McKeown, Polym. Chem. 5, 5267 (2014)

    Article  CAS  Google Scholar 

  29. F.J. Xia, M. Pan, S.C. Mu, R. Malpass-Evans, M. Carta, N.B. McKeown, G.A. Attard, A. Brew, D.J. Morgan, F. Marken, Electrochim. Acta 128, 3 (2014)

    Article  CAS  Google Scholar 

  30. Y.Y. Rong, R. Malpass-Evans, M. Carta, N.B. McKeown, G.A. Attard, F. Marken, Electrochem. Commun. 46, 26 (2014)

    Article  CAS  Google Scholar 

  31. Y.Y. Rong, R. Malpass-Evans, M. Carta, N.B. McKeown, G.A. Attard, F. Marken, Electroanalysis 26, 904 (2014)

    Article  CAS  Google Scholar 

  32. D. He, Y.Y. Rong, K.Z. Kui, S.C. Mu, T. Peng, R. Malpass-Evans, M. Carta, N.B. Mckeown, F. Marken, Electrochem. Commun. 59, 72 (2015)

    Article  CAS  Google Scholar 

  33. A. Kolodziej, S.D. Ahn, M. Carta, R. Malpass-Evans, N.B. McKeown, R.S.L. Chapman, S.D. Bull, F. Marken, Electrochim. Acta 160, 195 (2015)

    Article  CAS  Google Scholar 

  34. Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. (Gaussian, Inc., Wallingford CT, 2009)

  35. Obtained by data base search and predictive approximation at www.ACDlabs.com. Accessed June 2015

  36. C.Y. Cummings, J.D. Wadhawan, T. Nakabayashi, M. Haga, L. Rassaei, S.E.C. Dale, S. Bending, M. Pumera, S.C. Parker, F. Marken, J. Electroanal. Chem. 657, 196 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Marken.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.D., Kolodziej, A., Malpass-Evans, R. et al. Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis 7, 70–78 (2016). https://doi.org/10.1007/s12678-015-0284-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0284-8

Keywords

Navigation