Skip to main content
Log in

The Synthesis of Metallic β-Sn Nanostructures for Use as a Novel Pt Catalyst Support and Evaluation of Their Activity Toward Methanol Electrooxidation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This study offers a unique insight into the use of high surface area metallic tin as support material for platinum catalysts for fuel cell application. We have synthesized high surface area metallic β-tin nanostructures (TNSs) in aqueous solutions by novel one-pot process and used it as a platinum catalyst support in methanol electrooxidation reaction. Rigorous study of parameters controlling the size and shape of TNSs was performed, including selected surfactant molecules at various concentrations, tin salts, and the addition of sodium citrate. Rod-shaped particles with a 50-nm diameter and 500-nm length were obtained from solutions of selected surfactant in concentrations of 1–20 mM by sodium borohydride reduction. These particles had a β-Sn crystalline core with a main lattice plane of (101) and were covered by a 4-nm oxide shell. A maximal surface area of 170 m2 g−1 was measured from a sample prepared by using low concentration of sodium dodecyl sulfate (SDS) (1 mM). This sample is composed of nanorods and nano semi-spherical shape tin particles. Addition of sodium citrate, which acts as a Sn2+ ion ligand, yields longer rods. Electrochemical oxidation of methanol on platinum catalyst, supported on metallic Sn nanostructure, exhibits a high activity, which is comparable to commercial carbon-supported platinum catalysts. In situ surface-enhanced Raman (SER), emphasizing the role of surface oxides on the methanol oxidation activity, further studied methanol oxidation on Pt/TNS, Pt/C, and Pt-Sn alloy catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.G. Harrison, M.J. Willett, Nature 332, 337 (1988)

    Article  Google Scholar 

  2. D.-S. Lee, C.-H. Shim, J.-W. Lim, J.-S. Huh, D.-D. Lee, Y.-T. Kim, Sens. Actuators B 83, 250 (2002)

    Article  CAS  Google Scholar 

  3. Z. Zhang, R. Zou, G. Song, L. Yu, Z. Chen, J. Hu, J. Mater. Chem. 21, 17360 (2011)

    Article  CAS  Google Scholar 

  4. N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, Sens. Actuators B 107, 708 (2005)

    Article  CAS  Google Scholar 

  5. P. Candeloro, A. Carpentiero, S. Cabrini, E. Di Fabrizio, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, A. Gerardino, Microelectron. Eng. 78–79, 178 (2005)

    Article  Google Scholar 

  6. Y.-D. Wang, C.-L. Ma, X.-H. Wu, X.-D. Sun, H.-D. Li, Talanta 57, 875 (2002)

    Article  CAS  Google Scholar 

  7. Y. Wang, X. Wu, Y. Li, Z. Zhou, Solid-State Electron. 48, 627 (2004)

    Article  CAS  Google Scholar 

  8. S.B. Patil, P.P. Patil, M.A. More, Sens. Actuators B 125, 126 (2007)

    Article  CAS  Google Scholar 

  9. Y.-D. Wang, C.-L. Ma, X.-H. Wu, X.-D. Sun, H.-D. Li, Sens. Actuators B 85, 270 (2002)

    Article  CAS  Google Scholar 

  10. C.-H. Shim, D.-S. Lee, S.-I. Hwang, M.-B. Lee, J.-S. Huh, D.-D. Lee, Sens. Actuators B 81, 176 (2002)

    Article  CAS  Google Scholar 

  11. Y. Fukai, Y. Kondo, S. Mori, E. Suzuki, Electrochem. Commun. 9, 1439 (2007)

    Article  CAS  Google Scholar 

  12. J.M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  CAS  Google Scholar 

  13. J.L. Tirado, Mater. Sci. Eng. R 40, 103 (2003)

    Article  Google Scholar 

  14. W.W. Lee, J.-M. Lee, J. Mater. Chem. A 2, 1589 (2014)

    Article  CAS  Google Scholar 

  15. J.Q. Sun, J.S. Wang, X.C. Wu, G.S. Zhang, J.Y. Wei, S.Q. Zhang, H. Li, D.R. Chen, Cryst. Growth Des. 6, 1584 (2006)

    Article  CAS  Google Scholar 

  16. Y.-J. Hsu, S.-Y. Lu, J. Phys. Chem. B 109, 4398 (2005)

    Article  CAS  Google Scholar 

  17. K. Quang Trung, V. Xuan Hien, D. Duc Vuong, N. Duc Chien, Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 025010 (2010)

    Google Scholar 

  18. Y. Wang, J.Y. Lee, J. Phys. Chem. B 108, 17832 (2004)

    Article  CAS  Google Scholar 

  19. X.-L. Wang, M. Feygenson, M.C. Aronson, W.-Q. Han, J. Phys. Chem. C 114, 14697 (2010)

    Article  CAS  Google Scholar 

  20. L. Qiu, V.G. Pol, J. Calderon-Moreno, A. Gedanken, Ultrason. Sonochem. 12, 243 (2005)

    Article  CAS  Google Scholar 

  21. T.W. Chen, X.N. Yu, Z.H. Wang, J.L. Zhang, Adv. Mater. Res. 830, 426 (2014)

    Article  CAS  Google Scholar 

  22. N.S. Veizaga, V.I. Rodriguez, T.A. Rocha, M. Bruno, O.A. Scelza, S.R. De Miguel, E.R. Gonzalez, J. Electrochem. Soc. 162, F243 (2015)

    Article  CAS  Google Scholar 

  23. L. Zheng, L. Xiong, Q. Liu, K. Han, W. Liu, Y. Li, K. Tao, L. Niu, S. Yang, J. Xia, Electrochim. Acta 56, 9860 (2011)

    Article  CAS  Google Scholar 

  24. W.-Z. Hung, W.-H. Chung, D.-S. Tsai, D.P. Wilkinson, Y.-S. Huang, Electrochim. Acta 55, 2116 (2010)

    Article  CAS  Google Scholar 

  25. H. Zhang, C. Hu, X. He, L. Hong, G. Du, Y. Zhang, J. Power Sources 196, 4499 (2011)

    Article  CAS  Google Scholar 

  26. A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinacé, J. Power Sources 166, 87 (2007)

    Article  Google Scholar 

  27. J.C.M. Silva, R.F.B. De Souza, L.S. Parreira, E.T. Neto, M.L. Calegaro, M.C. Santos, Appl. Catal. B Environ 99, 265 (2010)

    Article  CAS  Google Scholar 

  28. I. Hanzu, T. Djenizian, G.F. Ortiz, P. Knauth, J. Phys. Chem. C 113, 20568 (2009)

    Article  CAS  Google Scholar 

  29. R. Harpeness, Z. Peng, X. Liu, V.G. Pol, Y. Koltypin, A. Gedanken, J. Colloid Interface Sci. 287, 678 (2005)

    Article  CAS  Google Scholar 

  30. R. Harpeness, A. Gedanken, A.M. Weiss, M.A. Slifkin, J. Mater. Chem. 13, 2603 (2003)

    Article  CAS  Google Scholar 

  31. C.R. Patra, S. Patra, A. Gabashvili, Y. Mastai, Y. Koltypin, A. Gedanken, V. Palchik, M.A. Slifkin, J. Nanosci. Nanotechnol. 6, 845 (2006)

    Article  CAS  Google Scholar 

  32. H. Teller, H. Kornwietz, A. Schechter, Meet. Abstr. MA2012-01, 268 (2012)

    Google Scholar 

  33. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Article  CAS  Google Scholar 

  34. N.R. Jana, L. Gearheart, C.J. Murphy, Adv. Mater. 13, 1389 (2001)

    Article  CAS  Google Scholar 

  35. O. Krichevski, Y. Levi-Kalisman, D. Szwarcman, Y. Lereah, G. Markovich, J. Colloid Interface Sci. 314, 304 (2007)

    Article  CAS  Google Scholar 

  36. J. Xiao, L. Qi, Nanoscale 3, 1383 (2011)

    Article  CAS  Google Scholar 

  37. N. Du, H. Zhang, B. Chen, X. Ma and D. Yang, Chem. Commun., 3028 (2008)

  38. J. Gao, C.M. Bender, C.J. Murphy, Langmuir 19, 9065 (2003)

    Article  CAS  Google Scholar 

  39. G. Xi, J. Ye, Inorg. Chem. 49, 2302 (2010)

    Article  CAS  Google Scholar 

  40. A. Survila, Z. Mockus, S. Kanapeckaitė, Electrochim. Acta 46, 571 (2000)

    Article  CAS  Google Scholar 

  41. C. Han, Q. Liu, D.G. Ivey, Electrochim. Acta 53, 8332 (2008)

    Article  CAS  Google Scholar 

  42. V.T. Deshpande, D.B. Sidreshmukh, Acta Crystallogr. 14, 335 (1961)

    Google Scholar 

  43. R.C. Weast, Handbook of Chemistry and Physics (CRC Press, Cleveland, 1976)

    Google Scholar 

  44. A.V. Tripković, R.R. Adžić, J. Electroanal. Chem. Interfacial Electrochem. 205, 335 (1986)

    Article  Google Scholar 

  45. E. Gileadi, Physical electrochemistry (WILEY-VCH Verlag GmbH & Co, Weinheim, 2011)

    Google Scholar 

  46. T. Iwasita, Electrochim. Acta 47, 3663 (2002)

    Article  CAS  Google Scholar 

  47. T. Frelink, W. Visscher, J.A.R. van Veen, Surf. Sci. 335, 353 (1995)

    Article  CAS  Google Scholar 

  48. S.-A. Sheppard, S.A. Campbell, J.R. Smith, G.W. Lloyd, F.C. Walsh, T.R. Ralph, Analyst 123, 1923 (1998)

    Article  CAS  Google Scholar 

  49. H. Yang, Y. Yang, S. Zou, J. Phys. Chem. C 111, 19058 (2007)

    Article  CAS  Google Scholar 

  50. M. Arenz, V. Stamenkovic, B.B. Blizanac, K.J. Mayrhofer, N.M. Markovic, P.N. Ross, J. Catal. 232, 402 (2005)

    Article  CAS  Google Scholar 

  51. E.M. Crabb, R. Marshall, D. Thompsett, J. Electrochem. Soc. 147, 4440 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank “The Israeli Ministry of National Infrastructures, Energy and Water” for the kind support of this work under project 211-11-005/2011-7-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Schechter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichevski, O., Teller, H., Subramanian, P. et al. The Synthesis of Metallic β-Sn Nanostructures for Use as a Novel Pt Catalyst Support and Evaluation of Their Activity Toward Methanol Electrooxidation. Electrocatalysis 6, 554–562 (2015). https://doi.org/10.1007/s12678-015-0273-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0273-y

Keywords

Navigation