Skip to main content

Advertisement

Log in

High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Published:
Electrocatalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Membrane electrode assemblies (MEAs) with gas diffusion electrodes (GDEs) fabricated by various catalyst layer (CL) deposit technologies were investigated for the application of high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The physical properties of the GDEs were characterized by scanning electron microscopy (SEM) and pore size distribution. The electrochemical properties were evaluated and analyzed by polarization curve, Tafel equation, electrochemistry impedance spectroscopy (EIS), and cyclic voltammetry (CV). The results showed that the electrodes prepared by ultrasonic spraying and automatic catalyst spraying under irradiation (ACSUI) methods have superior CL structure and high electrochemistry activity, resulting in high fuel cell performances. Durability tests revealed the feasibility of the electrodes for long-term HT-PEMFC operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Oono, A. Sounai, M. Hori, Prolongation of lifetime of high temperature proton exchange membrane fuel cells. J. Power Sources 241, 87–93 (2013)

    Article  CAS  Google Scholar 

  2. Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34, 449–477 (2009)

    Article  CAS  Google Scholar 

  3. N.L. Garland, J.P. Kopasz, The United States Department of Energy’s high temperature, low relative humidity membrane program. J. Power Sources 172, 94–99 (2007)

    Article  CAS  Google Scholar 

  4. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35, 9349–9384 (2010)

    Article  CAS  Google Scholar 

  5. K.L. Hsueh, E. Gonzalez, S. Srinivasan, D.T. Chin, Effects of phosphoric acid concentration on oxygen reduction kinetics at platinum. J. Electrochem. Soc. 131, 823–828 (1984)

    Article  CAS  Google Scholar 

  6. B.G. Pollet, Mission and objectives of the Hydrogen South Africa (HySA) Systems Competence Centre. Fuel Cells Bull. 2013, 10–17 (2013)

    Article  Google Scholar 

  7. B.G. Pollet, S. Pasupathi, G. Swart, K. Mouton, M. Lototskyy, M. Williams, P. Bujlo, S. Ji, B.J. Bladergroen, V. Linkov, Hydrogen South Africa (HySA) Systems Competence Centre: Mission, objectives, technological achievements and breakthroughs. Int. J. Hydrog. Energy 39, 3577–3596 (2014)

    Article  CAS  Google Scholar 

  8. G. Alberti, M. Casciola, Composite membranes for medium-temperature PEM fuel cells. Annu. Rev. Mater. Res. 33, 129–154 (2003)

    Article  CAS  Google Scholar 

  9. J.A. Asensio, P. Gómez-Romero, Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature poly-mer electrolyte membrane fuel cells. Fuel Cells 5, 336–343 (2005)

    Article  CAS  Google Scholar 

  10. J.A. Asensio, E.M. Sanchez, P. Gomez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 39, 3210–3239 (2010)

    Article  CAS  Google Scholar 

  11. S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-t. Lau, J.H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36, 813–843 (2011)

    Article  CAS  Google Scholar 

  12. Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells—preparation. characterization and fuel cell demonstration. Fuel Cells 4, 147–159 (2004)

    Article  CAS  Google Scholar 

  13. J. Patric, Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8, 96–102 (2003)

    Article  Google Scholar 

  14. A.S. Arico, A. Stassi, I. Gatto, G. Monforte, E. Passalacqua, V. Antonucci, Surface properties of Pt and PtCo electrocatalysts and their influence on the performance and degradation of high-temperature polymer electrolyte fuel cells. J. Phys. Chem. C 114, 15823–15836 (2010)

    Article  CAS  Google Scholar 

  15. J. Lobato, P. Cañizares, D. Ubeda, F.J. Pinar, M.A. Rodrigo, Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl. Catal. B 106, 174–180 (2011)

    CAS  Google Scholar 

  16. M. Mamlouk, K. Scott, An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells. J. Power Sources 196, 1084–1089 (2011)

    Article  CAS  Google Scholar 

  17. J. Parrondo, F. Mijangos, B. Rambabu, Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J. Power Sources 195, 3977–3983 (2010)

    Article  CAS  Google Scholar 

  18. J. Lobato, P. Canizares, M.A. Rodrigo, D. Ubeda, F.J. Pinar, J.J. Linares, Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC—effect of carbon content. Fuel Cells 10, 770–777 (2010)

    Article  CAS  Google Scholar 

  19. M. Mamlouk, K. Scott, The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. Int. J. Hydrog. Energy 35, 784–793 (2010)

    Article  CAS  Google Scholar 

  20. P. Mazúr, J. Soukup, M. Paidar, K. Bouzek, Gas diffusion electrodes for high temperature PEM-type fuel cells: role of a polymer binder and method of the catalyst layer deposition. J. Appl. Electrochem. 41, 1013–1019 (2011)

    Article  Google Scholar 

  21. A.D. Modestov, M.R. Tarasevich, V.Y. Filimonov, A.Y. Leykin, Influence of catalyst layer binder on catalyst utilization and performance of fuel cell with polybenzimidazole-H3PO4 membrane. J. Electrochem. Soc. 156, B650–B656 (2009)

    Article  CAS  Google Scholar 

  22. C. Pan, Q. Li, J.O. Jensen, R. He, L.N. Cleemann, M.S. Nilsson, N.J. Bjerrum, Q. Zeng, Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. J. Power Sources 172, 278–286 (2007)

    Article  CAS  Google Scholar 

  23. J.O. Park, K. Kwon, M.D. Cho, S.G. Hong, T.Y. Kim, D.Y. Yoo, Role of binders in high temperature PEMFC electrode. J. Electrochem. Soc. 158, B675–B681 (2011)

    Article  CAS  Google Scholar 

  24. H. Su, T.-C. Jao, S. Pasupathi, B.J. Bladergroen, V. Linkov, B.G. Pollet, A novel dual catalyst layer structured gas diffusion electrode for enhanced performance of high temperature proton exchange membrane fuel cell. J. Power Sources 246, 63–67 (2014)

    Article  CAS  Google Scholar 

  25. H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: evaluation of polymer binders in catalyst layer. Int. J. Hydrog. Energy 38, 11370–11378 (2013)

    Article  CAS  Google Scholar 

  26. H. Su, S. Pasupathi, B.J. Bladergroen, V. Linkov, B.G. Pollet, Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique. J. Power Sources 242, 510–519 (2013)

    Article  CAS  Google Scholar 

  27. H. Su, H. Liang, B.J. Bladergroen, V. Linkov, B.G. Pollet, S. Pasupathi, Effect of platinum distribution in dual catalyst layer structured gas diffusion electrode on the performance of high temperature PEMFC. J. Electrochem. Soc. 161, F506–F512 (2014)

    Article  CAS  Google Scholar 

  28. H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Performance investigation of membrane electrode assemblies for high temperature proton exchange membrane fuel cell. J. Power Energy Eng. 1, 95–100 (2013)

    Article  Google Scholar 

  29. C. Felix, T.-C. Jao, S. Pasupathi, B.G. Pollet, Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells. J. Power Sources 243, 40–47 (2013)

    Article  CAS  Google Scholar 

  30. G.-B. Jung, C.-C. Tseng, C.-C. Yeh, C.-Y. Lin, Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 37, 13645–13651 (2012)

    Article  CAS  Google Scholar 

  31. B. Millington, V. Whipple, B.G. Pollet, A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. J. Power Sources 196, 8500–8508 (2011)

    Article  CAS  Google Scholar 

  32. O.E. Kongstein, T. Berning, B. Børresen, F. Seland, R. Tunold, Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy 32, 418–422 (2007)

    Article  CAS  Google Scholar 

  33. D.S. Hwang, C.H. Park, S.C. Yi, Y.M. Lee, Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 36, 9876–9885 (2011)

    Article  CAS  Google Scholar 

  34. H.-K. Lee, J.-H. Park, D.-Y. Kim, T.-H. Lee, A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. J. Power Sources 131, 200–206 (2004)

    Article  CAS  Google Scholar 

  35. J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, F.J. Pinar, Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC. Int. J. Hydrog. Energy 35, 1347–1355 (2010)

    Article  CAS  Google Scholar 

  36. J. Lobato, M.A. Rodrigo, J.J. Linares, K. Scott, Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells. J. Power Sources 157, 284–292 (2006)

    Article  CAS  Google Scholar 

  37. F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J. Power Sources 160, 27–36 (2006)

    Article  CAS  Google Scholar 

  38. J.-H. Kim, H.-J. Kim, T.-H. Lim, H.-I. Lee, Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer. J. Power Sources 170, 275–280 (2007)

    Article  CAS  Google Scholar 

  39. A.-L. Ong, G.-B. Jung, C.-C. Wu, W.-M. Yan, Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high-temperature PEM fuel cells. Int. J. Hydrog. Energy 35, 7866–7873 (2010)

    Article  CAS  Google Scholar 

  40. M. Mamlouk, K. Scott, Phosphoric acid-doped electrodes for a PBI polymer membrane fuel cell. Int. J. Energy Res. 35, 507–519 (2011)

    Article  CAS  Google Scholar 

  41. C. Wannek, W. Lehnert, J. Mergel, Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers. J. Power Sources 192, 258–266 (2009)

    Article  CAS  Google Scholar 

  42. S. Matar, A. Higier, H. Liu, The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell. J. Power Sources 195, 181–184 (2010)

    Article  CAS  Google Scholar 

  43. J. Zhang, Y. Tang, C. Song, J. Zhang, Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C. J. Power Sources 172, 163–171 (2007)

    Article  CAS  Google Scholar 

  44. M.S. Saha, D. Malevich, E. Halliop, J.G. Pharoah, B.A. Peppley, K. Karan, Electrochemical activity and catalyst utilization of low Pt and thickness controlled membrane electrode assemblies. J. Electrochem. Soc. 158, B562–B567 (2011)

    Article  CAS  Google Scholar 

  45. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)

    Article  CAS  Google Scholar 

  46. J.-R. Kim, J.S. Yi, T.-W. Song, Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy. J. Power Sources 220, 54–64 (2012)

    Article  CAS  Google Scholar 

  47. X.Z. Yuan, H.J. Wang, J.C. Sun, J.J. Zhang, AC impedance technique in PEM fuel cell diagnosis—a review. Int. J. Hydrog. Energy 32, 4365–4380 (2007)

    Article  CAS  Google Scholar 

  48. T.J. Schmidt, J. Baurmeister, Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sources 176, 428–434 (2008)

    Article  CAS  Google Scholar 

  49. Y. Oono, A. Sounai, M. Hori, Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J. Power Sources 210, 366–373 (2012)

    Article  CAS  Google Scholar 

  50. Y. Oono, T. Fukuda, A. Sounai, M. Hori, Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J. Power Sources 195, 1007–1014 (2010)

    Article  CAS  Google Scholar 

  51. S. Yu, L. Xiao, B.C. Benicewicz, Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8, 165–174 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Hydrogen and Fuel Cell Technologies RDI Programme (HySA), funded by the Department of Science and Technology in South Africa (Project KP1-S01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaneng Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Felix, C., Barron, O. et al. High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Electrocatalysis 5, 361–371 (2014). https://doi.org/10.1007/s12678-014-0202-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0202-5

Keywords

Navigation