Skip to main content
Log in

Oxidative Impact of Carob Leaf Extract–Synthesized Iron Oxide Magnetic Nanoparticles on the Kidney, Liver, Testis, and Spleen of Wistar Rats

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

“Eco” synthesis has become a reliable, sustainable, and ecological protocol in the field of material science, which has given great attention to synthesizing a wide range of material/nanomaterials, such as nanomaterials, hybrid materials, and bio-inspired metal-metal oxides. Green synthesis is therefore considered an important tool for reducing the destructive effects of traditional nanoparticle syntheses commonly used in laboratory and industry. The aim of the present study was to investigate the effect of carob leaf–synthesis magnetic iron oxide nanoparticles on the oxidative status of the liver, kidney, spleen, and testis of male Wistar rats. The green synthesized nanoparticles were characterized through transmission electron microscopy, dynamic light scattering, and atomic force microscopy. The green-synthesized magnetite nanoparticles had 16 ± 2.4 nm average diameter and were monodispersed. The prepared nanoparticles did not cause oxidative stress damage in the tested organs, and this is mainly due to the strong antioxidant power of the carob leaf extract used in their synthesis. Carob leaf–synthesized nanoparticles prepared in the present study are highly safe which make them suitable to be used in many biological and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gallo, J., Long, N. J., & Aboagye, E. O. (2013). Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chemical Society Reviews, 42(19), 7816–7833. https://doi.org/10.1039/c3cs60149h.

    Article  Google Scholar 

  2. Khiabani, P. S., Soeriyadi, A. H., Reece, P. J., & Gooding, J. J. (2016). Based sensor for monitoring sun exposure. American Chemical Society Sensors, 1(6), 775–780. https://doi.org/10.1021/acssensors.6b00244.

    Article  Google Scholar 

  3. Simeonidis, K., Liébana-Viñas, S., Wiedwald, U., Ma, Z., Li, Z. A., Spasova, M., & Tsiaoussis, I. (2016). A versatile large-scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features. RSC Advances, 6(58), 53107–53117. https://doi.org/10.1039/C6RA09362K.

    Article  Google Scholar 

  4. Vikram, S., Dhakshnamoorthy, M., Vasanthakumari, R., Rajamani, A. R., Rangarajan, M., & Tsuzuki, T. (2015). Tuning the magnetic properties of iron oxide nanoparticles by a room-temperature air-atmosphere (RTAA) co-precipitation method. Journal of Nanoscience and Nanotechnology, 15(5), 3870–3878. https://doi.org/10.1166/jnn.2015.9544.

    Article  Google Scholar 

  5. Prasad, C., Yuvaraja, G., & Venkateswarlu, P. (2017). Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. Journal of Magnetism and Magnetic Materials, 424, 376–381. https://doi.org/10.1016/j.jmmm.2016.[6]084.

    Article  Google Scholar 

  6. Soenen, S. J., De Cuyper, M., De Smedt, S. C., & Braeckmans, K. (2012). Investigating the toxic effects of iron oxide nanoparticles. In Methods in enzymology (Vol. 509, pp. 195–224). Academic Press. https://doi.org/10.1016/B978-0-12-391858-1.00011-3.

  7. Shen, C. C., Wang, C. C., Liao, M. H., & Jan, T. R. (2011). A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. International Journal of Nanomedicine, 6, 1229. https://doi.org/10.2147/IJN.S21019.

    Article  Google Scholar 

  8. Anzai, Y., Piccoli, C. W., Outwater, E. K., Stanford, W., Bluemke, D. A., Nurenberg, P., & Brunberg, J. A. (2003). Evaluation of neck and body metastases to nodes with ferumoxtran 10–enhanced MR imaging: Phase III safety and efficacy study. Radiology, 228(3), 777–788. https://doi.org/10.1148/radiol.2283020872.

    Article  Google Scholar 

  9. Reddy, U. A., Prabhakar, P. V., & Mahboob, M. (2017). Biomarkers of oxidative stress for in vivo assessment of toxicological effects of iron oxide nanoparticles. Saudi journal of biological sciences, 24(6), 1172–1180. https://doi.org/10.1016/j.sjbs.2015.09.029.

    Article  Google Scholar 

  10. Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L., & Labhasetwar, V. (2008). Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular Pharmaceutics, 5(2), 316–327. https://doi.org/10.1021/mp7001285.

    Article  Google Scholar 

  11. Hanini, A., Schmitt, A., Kacem, K., Chau, F., Ammar, S., & Gavard, J. (2011). Evaluation of iron oxide nanoparticle biocompatibility. International Journal of Nanomedicine, 6, 787. https://doi.org/10.2147/IJN.S17574.

    Article  Google Scholar 

  12. Awwad, A. M., & Salem, N. M. (2012). A green and facile approach for synthesis of magnetite nanoparticles. Nanoscience and Nanotechnology, 2(6), 208–213. https://doi.org/10.5923/j.nn.20120206.09.

    Article  Google Scholar 

  13. Nidhin, M., Indumathy, R., Sreeram, K. J., & Nair, B. U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31(1), 93–96. https://doi.org/10.1007/s12034-008-0016-2.

    Article  Google Scholar 

  14. Jain, R., Nandakumar, K., Srivastava, V., Vaidya, S. K., Patet, S., & Kumar, P. (2008). Hepatoprotective activity of ethanolic and aqueous extract of Terminalia belerica in rats. Pharmacology online, 2, 411–427.

    Google Scholar 

  15. Ruiz-Larrea, M. B., Leal, A. M., Liza, M., Lacort, M., & de Groot, H. (1994). Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids, 59(6), 383–388. https://doi.org/10.1016/0039-128x(94)90006-x.

    Article  Google Scholar 

  16. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6.

    Article  Google Scholar 

  17. Moshage, H., Kok, B., Huizenga, J. R., & Jansen, P. L. (1995). Nitrite and nitrate determinations in plasma: A critical evaluation. Clinical Chemistry, 41(6), 892–896.

    Article  Google Scholar 

  18. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139.

    Google Scholar 

  19. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.

    Article  Google Scholar 

  20. Han, K. N., & Kim, N. S. (2009). Challenges and opportunities in direct write technology using nano-metal particles. Kona Powder and Particle Journal, 27, 73–83. https://doi.org/10.14356/kona.2009009.

    Article  Google Scholar 

  21. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), 239–253. https://doi.org/10.1093/toxsci/kfm240.

    Article  Google Scholar 

  22. Takahashi, K., Kato, H., Saito, T., Matsuyama, S., & Kinugasa, S. (2008). Precise measurement of the size of nanoparticles by dynamic light scattering with uncertainty analysis. Particle and Particle Systems Characterization, 25(1), 31–38. https://doi.org/10.1002/ppsc.200700015.

    Article  Google Scholar 

  23. El Gazzar, M., El Mezayen, R., Marecki, J. C., Nicolls, M. R., Canastar, A., & Dreskin, S. C. (2006). Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. International Immunopharmacology, 6(7), 1135–1142. https://doi.org/10.1016/j.intimp.2006.02.004.

    Article  Google Scholar 

  24. Wu, L., Zhang, J., & Watanabe, W. (2011). Physical and chemical stability of drug nanoparticles. Advanced Drug Delivery Reviews, 63(6), 456–469. https://doi.org/10.1016/j.addr.2011.02.001.

    Article  Google Scholar 

  25. Titus, T. G.. (2019). U.S. patent application no. 10/200,438.

  26. Anane, R., & Creppy, E. E. (2001). Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: Prevention by superoxide dismutase+ catalase and vitamins E and C. Human and Experimental Toxicology, 20(9), 477–481. https://doi.org/10.1191/096032701682693053.

    Article  Google Scholar 

  27. Fadillioglu, E., Erdogan, H., Iraz, M., & Yagmurca, M. (2003). Effects of caffeic acid phenethyl ester against doxorubicin-induced neuronal oxidant injury. Neuroscience Research Communications, 33(2), 132–138. https://doi.org/10.1002/nrc.10089.

    Article  Google Scholar 

  28. Ilhan, A., Akyol, O., Gurel, A., Armutcu, F., Iraz, M., & Oztas, E. (2004). Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Free Radical Biology and Medicine, 37(3), 386–394. https://doi.org/10.1016/j.freeradbiomed.2004.04.022.

    Article  Google Scholar 

  29. Gülşen, İ., Ak, H., Çölçimen, N., Alp, H. H., Akyol, M. E., Demir, İ., & Rağbetli, M. Ç. (2016). Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurgery, 86, 243–249. https://doi.org/10.1016/j.wneu.2015.09.052.

    Article  Google Scholar 

  30. Joshi, G., Aluise, C. D., Cole, M. P., Sultana, R., Pierce, W. M., Vore, M., St Clair, D. K., & Butterfield, D. A. (2010). Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: Implications for oxidative stress-mediated chemobrain. Neuroscience, 166(3), 796–807. https://doi.org/10.1016/j.neuroscience.2010.01.021.

    Article  Google Scholar 

  31. Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45, 51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.

    Article  Google Scholar 

  32. Mazzetti, A. P., Fiorile, M. C., Primavera, A., & Bello, M. L. (2015). Glutathione transferases and neurodegenerative diseases. Neurochemistry International, 82, 10–18. https://doi.org/10.1016/j.neuint.2015.01.008.

    Article  Google Scholar 

  33. Kumazawa, S., Taniguchi, M., Susuki, Y., Shimura, M., Kwon, M.-S., & Nakayama, T. (2002). Antioxidant activity of polyphenols in carob pods. Journal of Agricultural and Food Chemistry, 50, 373–377. https://doi.org/10.1021/jf010938r.

    Article  Google Scholar 

  34. Makris, D., & Kefalas, P. (2004). Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technology and Biotechnology, 42, 105–108.

    Google Scholar 

  35. Owen, R., Haubner, R., Hull, W., Erben, G., Spiegelhalder, B., Bartsch, H., & Haber, B. (2003). Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food and Chemical Toxicology, 41, 1727–1738. https://doi.org/10.1016/s0278-6915(03)00200-x.

    Article  Google Scholar 

  36. Papagiannopoulos, M., Wollseifen, H., Mellenthin, A., Haber, B., & Galensa, R. (2004). Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UVESI/ MS. Journal of Agricultural and Food Chemistry, 52, 3784–3791. https://doi.org/10.1021/jf030660y.

    Article  Google Scholar 

  37. Sadeghi, L., Tanwir, F., & Yousefi Babadi, V. (2015). In vitro toxicity of iron oxide nanoparticle: Oxidative damages on Hep G2 cellspathology. Experimental and Toxicologic Pathology, 67(2), 197–203.

    Article  Google Scholar 

  38. Chamorro, S., Gutierrez, L., Vaquero, M. P., Verdoy, D., Salas, G., Luengo, Y., et al. (2015). Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology., 26(20), 205101. https://doi.org/10.1088/0957-4484/26/20/205101.

    Article  Google Scholar 

  39. Kim, J. S., Yoon, T. J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., et al. (2006). Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological Sciences, 89(1), 338–347. https://doi.org/10.1093/toxsci/kfj027.

    Article  Google Scholar 

  40. Parivar, K., Fard, F. M., Bayat, M., Alavian, S. M., & Motavaf, M. (2016). Evaluation of iron oxide nanoparticles toxicity on liver cells of BALB/c rats. Iranian Red Crescent Medical Journal, 18(1), e28939.

    Article  Google Scholar 

  41. Zhu, M. T., Feng, W. Y., Wang, B., Wang, T. C., Gu, Y. Q., Wang, M., et al. (2008). Comparative study of pulmonary responses to nano- and submicronsized ferric oxide in rats. Toxicology, 247(2–3), 102–111. https://doi.org/10.1016/j.tox.2008.02.011.

    Article  Google Scholar 

  42. Wang, B., Feng, W., Zhu, M., Wang, Y., Wang, M., Gu, Y., et al. (2008). Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. Journal of Nanoparticle Research, 11(1), 41–53. https://doi.org/10.1007/s11051-008-9452-6.

    Article  Google Scholar 

  43. Babadi, V. Y. (2012). Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. Journal of Pharmaceutical and Biomedical Research, 23(23), 1–4.

    Google Scholar 

  44. Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11), 209.

    Article  Google Scholar 

  45. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671–8677.

    Article  Google Scholar 

  46. Shahwan, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., & Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172(1), 258–266.

    Article  Google Scholar 

  47. Markova, Z., Novak, P., Kaslik, J., Plachtova, P., Brazdova, M., Jancula, D., & Varma, R. (2014). Iron (II, III)–polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. ACS Sustainable Chemistry & Engineering, 2(7), 1674–1680.

    Article  Google Scholar 

  48. Luo, F., Chen, Z., Megharaj, M., & Naidu, R. (2014). Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 4(96), 53467–53474.

    Article  Google Scholar 

  49. Senthil, M., & Ramesh, C. (2012). Biogenic synthesis of Fe3O4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest Journal of Nanomaterials & Biostructures (DJNB), 7(4), 1655–1659.

  50. Neupane, B. P., Chaudhary, D., Paudel, S., Timsina, S., Chapagain, B., Jamarkattel, N., & Tiwari, B. R. (2019). Himalayan honey loaded iron oxide nanoparticles: Synthesis, characterization and study of antioxidant and antimicrobial activities. International Journal of Nanomedicine, 14, 3533.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to Acknowledge Prof. Dr. Neveen A Noor, Zoology Department, Faculty of Science, Cairo University, and Miss Esraa M. Ali, Biophysics Department, Faculty of Science, Cairo University, for their help and cooperation.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Mohamed Fahmy.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Research Involving Human Participants or Animals

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmy, H.M. Oxidative Impact of Carob Leaf Extract–Synthesized Iron Oxide Magnetic Nanoparticles on the Kidney, Liver, Testis, and Spleen of Wistar Rats. BioNanoSci. 10, 54–61 (2020). https://doi.org/10.1007/s12668-019-00704-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00704-1

Keywords

Navigation