Skip to main content
Log in

Sweet Strategies in Prostate Cancer Biomarker Research: Focus on a Prostate Specific Antigen

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

A clarion call for early diagnosis of prostate cancer (PCa) can be addressed using new strategies such as aberrant protein glycosylation. Proteins are naturally affected by numerous post-translational modifications, mainly by glycosylation which is associated with physiological and pathological transformation participating in the development of diseases such as various types of cancer, but also neurodegenerative disorders, endocrine abnormalities, AIDS, etc. Therefore, glycoproteins play crucial role in cancer biomarker research and determination of glycosylation is nowadays one of the key analytical tasks. Predominantly used approach based on affinity assays using lectins as glycorecognition elements has become an essential part in the biomedical research with great prospects in the clinical diagnostics. Owing to their ability to specifically recognize saccharide structures, lectins can be applied for binding to different molecules and substrates such as proteins, lipids, cell walls as well as in biological materials, including stem cells and microorganisms. In order to improve the diagnostic potential of well-known cancer biomarkers, lectin-based biosensors and biochips are already being widely used for the detection of glycoproteins. In this review, we will focus on various bioassay strategies for glycoprofiling of a prostate-specific antigen (PSA) with emphasis to modern and prospective techniques suitable for analysis of PSA glycan motifs as biosensors, biochips and mass spectrometry methods. All mentioned methods are suitable for applications in research, diagnosis and therapy of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: a Cancer Journal for Clinicians, 63, 11–30.

    Google Scholar 

  2. Madu, C. O., & Lu, Y. (2010). Novel diagnostic biomarkers for prostate cancer. Journal of Cancer, 1, 150–177.

    Article  Google Scholar 

  3. Stoyanova, T., Cooper, A. R., Drake, J. M., Liu, X., Armstrong, A. J., Pienta, K. J., Zhang, H., Kohn, D. B., Huang, J., Witte, O. N., & Goldstein, A. S. (2013). Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proceedings of the National Academy of Sciences of the United States of America, 110, 20111–20116.

    Article  Google Scholar 

  4. Talcott, J. A., Rieker, P., Clark, J. A., Propert, K. J., Weeks, J. C., Beard, C. J., Wishnow, K. I., Kaplan, I., Loughlin, K. R., Richie, J. P., & Kantoff, P. W. (1998). Patient-reported symptoms after primary therapy for early prostate cancer: results of a prospective cohort study. Journal of Clinical Oncology, 16, 275–283.

    Article  Google Scholar 

  5. Deng, X., He, G., Liu, J., Luo, F., Peng, X., Tang, S., Gao, Z., Lin, Q., Keller, J. M., Yang, T., & Keller, E. T. (2014). Recent advances in bone-targeted therapies of metastatic prostate cancer. Cancer Treatment Reviews, 40, 730–738.

    Article  Google Scholar 

  6. Blixt, O., & Westerlind, U. (2014). Arraying the post-translational glycoproteome (PTG). Current Opinion in Chemical Biology, 18, 62–69.

    Article  Google Scholar 

  7. Reis, C. A., Osorio, H., Silva, L., Gomes, C., & David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. Journal of Clinical Pathology, 63, 322–329.

    Article  Google Scholar 

  8. Dosekova, E., Filip, J., Bertok, T., Both, P., Kasak, P., Tkac, J. (2016). Nanotechnology in glycomics: applications in diagnostics, Therapy, Imaging, and Separation Processes. Medicinal Research Reviews, DOI:10.1002/med.21420.

  9. Munkley, J., Mills, I. G., & Elliott, D. J. (2016). The role of glycans in the development and progression of prostate cancer. Nature Reviews in Urology, 13, 324–333.

    Article  Google Scholar 

  10. Belický, Š., Katrlík, J., & Tkáč, J. (2016). Glycan and lectin biosensors. Essays in Biochemistry, 60, 37–47.

    Article  Google Scholar 

  11. Paleček, E., Tkáč, J., Bartošík, M., Bertók, T., Ostatná, V., & Paleček, J. (2015). Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chemical Reviews, 115, 2045–2108.

    Article  Google Scholar 

  12. Ladenson, R. P., Schwartz, S. O., & Ivy, A. C. (1949). Incidence of the blood groups and the secretor factor in patients with pernicious anemia and stomach carcinoma. Americal Journal of Medical Sciences, 217, 194–197.

    Article  Google Scholar 

  13. Hakomori, S. I., & Murakami, W. T. (1968). Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proceedings of the National Academy of Sciences of the United States of America, 59, 254–261.

    Article  Google Scholar 

  14. Julien, S., Bobowski, M., Steenackers, A., Le Bourhis, X., & Delannoy, P. (2013). How do gangliosides regulate RTKs signaling? Cells, 2, 751–767.

    Article  Google Scholar 

  15. Kuzmanov, U., Kosanam, H., & Diamandis, E. (2013). The sweet and sour of serological glycoprotein tumor biomarker quantification. BMC Medicine, 11, 31.

    Article  Google Scholar 

  16. Varki, A. (2009). In A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, & M. E. Etzler (Eds.), Essentials of glycobiology. NY: Cold Spring Harbor.

    Google Scholar 

  17. Gilgunn, S., Conroy, P. J., Saldova, R., Rudd, P. M., & O'Kennedy, R. J. (2013). Aberrant PSA glycosylation—a sweet predictor of prostate cancer. Nature Reviews in Urology, 10, 99–107.

    Article  Google Scholar 

  18. Clark, D., & Mao, L. (2012). Cancer biomarker discovery: lectin-based strategies targeting glycoproteins. Disease Markers, 33, 1–10.

    Article  Google Scholar 

  19. Bennett, E. P., Mandel, U., Clausen, H., Gerken, T. A., Fritz, T. A., & Tabak, L. A. (2012). Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 22, 736–756.

    Article  Google Scholar 

  20. Morelle, W., & Michalski, J.-C. (2007). Analysis of protein glycosylation by mass spectrometry. Nature Protocols, 2, 1585–1602.

    Article  Google Scholar 

  21. Li, C., & Lubman, D. (2011). Analysis of serum protein glycosylation with antibody-lectin microarray for high-throughput biomarker screening. Methods in Molecular Biology, 723, 15–28.

    Article  Google Scholar 

  22. Pihikova, D., Pakanova, Z., Nemcovic, M., Barath, P., Belicky, S., Bertok, T., Kasak, P., Mucha, J., & Tkac, J. (2016). Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: focus on sialic acid. Proteomics, 16, 3085–3095.

    Article  Google Scholar 

  23. Satish, P. R., & Surolia, A. (2001). Exploiting lectin affinity chromatography in clinical diagnosis. Journal of Biochemical and Biophysical Methods, 49, 625–640.

    Article  Google Scholar 

  24. Katrlik, J., Svitel, J., Gemeiner, P., Kozar, T., & Tkac, J. (2010). Glycan and lectin microarrays for glycomics and medicinal applications. Medicinal Research Reviews, 30, 394–418.

    Google Scholar 

  25. Damborsky, P., Koczula, K. M., Gallotta, A., & Katrlik, J. (2016). Lectin-based lateral flow assay: proof-of-concept. The Analyst, 141, 6444–6448.

    Article  Google Scholar 

  26. Nogueira, L., Corradi, R., & Eastham, J. A. (2010). Other biomarkers for detecting prostate cancer. BJU International, 105, 166–169.

    Article  Google Scholar 

  27. Romero Otero, J., Garcia Gomez, B., Campos Juanatey, F., & Touijer, K. A. (2014). Prostate cancer biomarkers: an update. Urologic Oncology, 32, 252–260.

    Article  Google Scholar 

  28. Roobol, M. J., & Carlsson, S. V. (2013). Risk stratification in prostate cancer screening. Nature Reviews in Urology, 10, 38–48.

    Article  Google Scholar 

  29. Schröder, F. H., Hugosson, J., Roobol, M. J., Tammela, T. L. J., Ciatto, S., Nelen, V., Kwiatkowski, M., Lujan, M., Lilja, H., Zappa, M., Denis, L. J., Recker, F., Berenguer, A., Määttänen, L., Bangma, C. H., Aus, G., Villers, A., Rebillard, X., van der Kwast, T., Blijenberg, B. G., Moss, S. M., de Koning, H. J., & Auvinen, A. (2009). Screening and prostate-cancer mortality in a randomized European study. New England Journal of Medicine, 360, 1320–1328.

    Article  Google Scholar 

  30. Vermassen, T., Speeckaert, M. M., Lumen, N., Rottey, S., & Delanghe, J. R. (2012). Glycosylation of prostate specific antigen and its potential diagnostic applications. Clinica Chimica Acta, 413, 1500–1505.

    Article  Google Scholar 

  31. Murthy, V., Rishi, A., Gupta, S., Kannan, S., Mahantshetty, U., Tongaonkar, H., Bakshi, G., Prabhash, K., Bhanushali, P., Shinde, B., Inamdar, N., & Shrivastava, S. (2016). Clinical impact of prostate specific antigen (PSA) inter-assay variability on management of prostate cancer. Clinical Biochemistry, 49, 79–84.

    Article  Google Scholar 

  32. Peracaula, R., Tabares, G., Royle, L., Harvey, D. J., Dwek, R. A., Rudd, P. M., & de Llorens, R. (2003). Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology, 13, 457–470.

    Article  Google Scholar 

  33. Llop, E., Ferrer-Batallé, M., Barrabés, S., Guerrero, P. E., Ramírez, M., Saldova, R., Rudd, P. M., Aleixandre, R. N., Comet, J., de Llorens, R., & Peracaula, R. (2016). Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics, 6, 1190–1204.

    Article  Google Scholar 

  34. Nahalkova, J., Svitel, J., Gemeiner, P., Danielsson, B., Pribulova, B., & Petrus, L. (2002). Affinity analysis of lectin interaction with immobilized C- and O- gylcosides studied by surface plasmon resonance assay. Journal of Biochemical and Biophysical Methods, 52, 11–18.

    Article  Google Scholar 

  35. Wu, A. M., Lisowska, E., Duk, M., & Yang, Z. (2009). Lectins as tools in glycoconjugate research. Glycoconjugate Journal, 26, 899–913.

    Article  Google Scholar 

  36. Vornholt, W., Hartmann, M., & Keusgen, M. (2007). SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources. Biosensors and Bioelectronics, 22, 2983–2988.

    Article  Google Scholar 

  37. Ohyama, C., Hosono, M., Nitta, K., Oh-eda, M., Yoshikawa, K., Habuchi, T., Arai, Y., & Fukuda, M. (2004). Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology, 14, 671–679.

    Article  Google Scholar 

  38. Kosanovic, M. M., & Jankovic, M. M. (2005). Sialylation and fucosylation of cancer-associated prostate specific antigen. Journal of BUON, 10, 247–250.

    Google Scholar 

  39. Meany, D., Zhang, Z., Sokoll, L., Zhang, H., & Chan, D. (2009). Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. Journal of Proteome Research, 8, 613–619.

    Article  Google Scholar 

  40. Fukushima, K., Satoh, T., Baba, S., & Yamashita, K. (2010). Alpha 1, 2-fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology, 20, 452–460.

    Article  Google Scholar 

  41. Dwek, M. V., Jenks, A., & Leathem, A. J. (2010). A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clinica Chimica Acta, 411, 1935–1939.

    Article  Google Scholar 

  42. McCoy, J., Varani, J., & Goldstein, I. (1983). Enzyme-linked lectin assay (ELLA): use of alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Analytical Biochemistry, 130, 437–444.

    Article  Google Scholar 

  43. Dwek, M., Jenks, A., & Leathem, A. (2010). A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clinica Chimica Acta, 411, 1935–1939.

    Article  Google Scholar 

  44. Li, Q. K., Chen, L., Ao, M. H., Chiu, J. H., Zhang, Z., Zhang, H., & Chan, D. W. (2015). Serum fucosylated prostate-specific antigen (PSA) improves the differentiation of aggressive from non-aggressive prostate cancers. Theranostics, 5, 267–276.

    Article  Google Scholar 

  45. Idil, N., Perçin, I., Karakoç, V., Yavuz, H., Aksöz, N., & Denizli, A. (2015). Concanavalin A immobilized magnetic poly (glycidyl methacrylate) beads for prostate specific antigen binding. Colloids and Surfaces B: Biointerfaces, 134, 461–468.

    Article  Google Scholar 

  46. Yoneyama, T., Ohyama, C., Hatakeyama, S., Narita, S., Habuchi, T., Koie, T., Mori, K., Hidari, K. I., Yamaguchi, M., Suzuki, T., & Tobisawa, Y. (2014). Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochemical and Biophysical Research Communications, 448, 390–396.

    Article  Google Scholar 

  47. Pihikova, D., Kasak, P., Kubanikova, P., Sokol, R., & Tkac, J. (2016). Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Analytica Chimica Acta, 934, 72–79.

    Article  Google Scholar 

  48. Jolly, P., Damborsky, P., Madaboosi, N., Soares, R. R., Chu, V., Conde, J. P., Katrlik, J., & Estrela, P. (2016). DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosensors and Bioelectronics, 79, 313–319.

    Article  Google Scholar 

  49. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442, 368–373.

    Article  Google Scholar 

  50. Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent developments in paper-based microfluidic devices. Analytical Chemistry, 87, 19–41.

    Article  Google Scholar 

  51. Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13, 2210–2251.

    Article  Google Scholar 

  52. Chiu, R. Y. T., Jue, E., Yip, A. T., Berg, A. R., Wang, S. J., Kivnick, A. R., Nguyen, P. T., & Kamei, D. T. (2014). Simultaneous concentration and detection of biomarkers on paper. Lab on a Chip, 14, 3021–3028.

    Article  Google Scholar 

  53. Choi, J. R., Hu, J., Tang, R., Gong, Y., Feng, S., Ren, H., Wen, T., Li, X., Wan Abas, W. A. B., Pingguan-Murphy, B., & Xu, F. (2016). An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab on a Chip, 16, 611–621.

    Article  Google Scholar 

  54. Damborsky, P., Zamorova, M., & Katrlik, J. (2016). Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches. Proteomics, 16, 3096–3104.

    Article  Google Scholar 

  55. Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45.

    Article  Google Scholar 

  56. Hammond, J., Formisano, N., Estrela, P., Carrara, S., & Tkac, J. (2016). Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 60, 69–80.

    Article  Google Scholar 

  57. Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors-sensor principles and architectures. Sensors, 8, 1400–1458.

    Article  Google Scholar 

  58. Pihikova, D., Belicky, S., Kasak, P., Bertok, T., & Tkac, J. (2016). Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. The Analyst, 141, 1044–1051.

    Article  Google Scholar 

  59. Xia, N., Deng, D., Zhang, L., Yuan, B., Jing, M., Du, J., & Liu, L. (2013). Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles. Biosensors and Bioelectronics, 43, 155–159.

    Article  Google Scholar 

  60. Tzouvadaki, I., Jolly, P., Lu, X., Ingebrandt, S., De Micheli, G., Estrela, P., & Carrara, S. (2016). Label-free ultrasensitive memristive aptasensor. Nano Letters, 16, 4472–4476.

    Article  Google Scholar 

  61. Haupt, K., & Mosbach, K. (2000). Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Reviews, 100, 2495–2504.

    Article  Google Scholar 

  62. Jolly, P., Tamboli, V., Harniman, R. L., Estrela, P., Allender, C. J., & Bowen, J. L. (2016). Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosensors and Bioelectronics, 75, 188–195.

    Article  Google Scholar 

  63. O'Sullivan, C. (2002). Aptasensors—the future of biosensing? Analytical and Bioanalytical Chemistry, 372, 44–48.

    Article  Google Scholar 

  64. Vargová, V., Helma, R., Paleček, E., & Ostatná, V. (2016). Electrochemical sensing of concanavalin A and ovalbumin interaction in solution. Analytica Chimica Acta, 935, 97–103.

    Article  Google Scholar 

  65. Alley, W. R., Mann, B. F., & Novotny, M. V. (2013). High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chemical Reviews, 113, 2668–2732.

    Article  Google Scholar 

  66. Alley, W. R., Madera, M., Mechref, Y., & Novotny, M. V. (2010). Chip-based reversed-phase liquid chromatography−mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Analytical Chemistry, 82, 5095–5106.

    Article  Google Scholar 

  67. Walther, T., Karamanska, R., Chan, R. W., Chan, M. C., Jia, N., Air, G., Hopton, C., Wong, M. P., Dell, A., & Peiris, J. M. (2013). Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathogens, 9, e1003223.

    Article  Google Scholar 

  68. Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R., & Altmann, F. (2008). Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics, 8, 2858–2871.

    Article  Google Scholar 

  69. Leipold, M. D., Herrera, I., Ornatsky, O., Baranov, V., & Nitz, M. (2008). ICP-MS-based multiplex profiling of glycoproteins using lectins conjugated to lanthanide-chelating polymers. Journal of Proteome Research, 8, 443–449.

    Article  Google Scholar 

  70. Thanawiroon, C., Rice, K. G., Toida, T., & Linhardt, R. J. (2004). Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. Journal of Biological Chemistry, 279, 2608–2615.

    Article  Google Scholar 

  71. Karlsson, N. G., Wilson, N. L., Wirth, H. J., Dawes, P., Joshi, H., & Packer, N. H. (2004). Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Communications in Mass Spectrometry, 18, 2282–2292.

    Article  Google Scholar 

  72. Wuhrer, M., Koeleman, C. A., Hokke, C. H., & Deelder, A. M. (2005). Protein glycosylation analyzed by normal-phase nano-liquid chromatography–mass spectrometry of glycopeptides. Analytical Chemistry, 77, 886–894.

    Article  Google Scholar 

  73. Bennun, S. V., Yarema, K. J., Betenbaugh, M. J., & Krambeck, F. J. (2013). Integration of the transcriptome and glycome for identification of glycan cell signatures. PLoS Computational Biology, 9, e1002813.

    Article  Google Scholar 

  74. Song, E., Mayampurath, A., Yu, C.-Y., Tang, H., & Mechref, Y. (2014). Glycoproteomics: identifying the glycosylation of prostate specific antigen at normal and high isoelectric points by LC–MS/MS. Journal of Proteome Research, 13, 5570–5580.

    Article  Google Scholar 

  75. Leymarie, N., Griffin, P. J., Jonscher, K., Kolarich, D., Orlando, R., McComb, M., Zaia, J., Aguilan, J., Alley, W. R., Altmann, F., Ball, L. E., Basumallick, L., Bazemore-Walker, C. R., Behnken, H., Blank, M. A., Brown, K. J., Bunz, S. C., Cairo, C. W., Cipollo, J. F., Daneshfar, R., Desaire, H., Drake, R. R., Go, E. P., Goldman, R., Gruber, C., Halim, A., Hathout, Y., Hensbergen, P. J., Horn, D. M., Hurum, D., Jabs, W., Larson, G., Ly, M., Mann, B. F., Marx, K., Mechref, Y., Meyer, B., Moginger, U., Neusubeta, C., Nilsson, J., Novotny, M. V., Nyalwidhe, J. O., Packer, N. H., Pompach, P., Reiz, B., Resemann, A., Rohrer, J. S., Ruthenbeck, A., Sanda, M., Schulz, J. M., Schweiger-Hufnagel, U., Sihlbom, C., Song, E., Staples, G. O., Suckau, D., Tang, H., Thaysen-Andersen, M., Viner, R. I., An, Y., Valmu, L., Wada, Y., Watson, M., Windwarder, M., Whittal, R., Wuhrer, M., Zhu, Y., & Zou, C. (2013). Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Molecular and Cellular Proteomics, 12, 2935–2951.

    Article  Google Scholar 

  76. Behnken, H. N., Ruthenbeck, A., Schulz, J.-M., & Meyer, B. (2014). Glycan analysis of prostate specific antigen (PSA) directly from the intact glycoprotein by HR-ESI/TOF-MS. Journal of Proteome Research, 13, 997–1001.

    Article  Google Scholar 

  77. Song, E., Hu, Y., Hussein, A., Yu, C. Y., Tang, H., & Mechref, Y. (2015). Characterization of the glycosylation site of human PSA prompted by missense mutation using LC-MS/MS. Journal of Proteome Research, 14, 2872–2883.

    Article  Google Scholar 

  78. Alley Jr., W. R., & Novotny, M. V. (2010). Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins. Journal of Proteome Research, 9, 3062–3072.

    Article  Google Scholar 

  79. Cointe, D., Leroy, Y., & Chirat, F. (1998). Determination of the sialylation level and of the ratio alpha-(2-->3)/alpha-(2-->6) sialyl linkages of N-glycans by methylation and GC/MS analysis. Carbohydrate Research, 311, 51–59.

    Article  Google Scholar 

  80. Reiding, K. R., Blank, D., Kuijper, D. M., Deelder, A. M., & Wuhrer, M. (2014). High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Analytical Chemistry, 86, 5784–5793.

    Article  Google Scholar 

  81. de Haan, N., Reiding, K. R., Haberger, M., Reusch, D., Falck, D., & Wuhrer, M. (2015). Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Analytical Chemistry, 87, 8284–8291.

    Article  Google Scholar 

  82. Pakanová, Z., Nemčovič, M., Bystrický, P., Matulová, M., Pätoprstý, V., Wilson Iain, B. H., & Mucha, J. (2015). Comparative ESI FT-MS and MALDI-TOF structural analyses of representative human N-linked glycans. Chemical Papers, 69, 1633–1638.

    Article  Google Scholar 

  83. Okada, T., Sato, Y., Kobayashi, N., Sumida, K., Satomura, S., Matsuura, S., Takasaki, M., & Endo, T. (2001). Structural characteristics of the N-glycans of two isoforms of prostate-specific antigens purified from human seminal fluid. Biochimica et Biophysica Acta, 1525, 149–160.

    Article  Google Scholar 

  84. White, K. Y., Rodemich, L., Nyalwidhe, J. O., Comunale, M. A., Clements, M. A., Lance, R. S., Schellhammer, P. F., Mehta, A. S., Semmes, O. J., & Drake, R. R. (2009). Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. Journal of Proteome Research, 8, 620–630.

    Article  Google Scholar 

  85. Tajiri, M., Ohyama, C., & Wada, Y. (2008). Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiology, 18, 2–8.

    Article  Google Scholar 

  86. Sarrats, A., Saldova, R., Comet, J., O'Donoghue, N., de Llorens, R., Rudd, P. M., & Peracaula, R. (2010). Glycan characterization of PSA 2-DE subforms from serum and seminal plasma. OMICS, 14, 465–474.

    Article  Google Scholar 

  87. Li, Y., Tian, Y., Rezai, T., Prakash, A., Lopez, M. F., Chan, D. W., & Zhang, H. (2011). Simultaneous analysis of glycosylated and sialylated PSA reveals differential distribution of glycosylated PSA isoforms in prostate cancer tissues. Analytical Chemistry, 83, 240–245.

    Article  Google Scholar 

  88. Hsiao, C.-J., Tzai, T.-S., Chen, C.-H., Yang, W.-H., & Chen, C.-H. (2016). Analysis of urinary prostate-specific antigen glycoforms in samples of prostate cancer and benign prostate hyperplasia. Disease Markers, 2016, 8915809.

    Article  Google Scholar 

  89. Acevedo, B., Perera, Y., Ruiz, M., Rojas, G., Benítez, J., Ayala, M., & Gavilondo, J. (2002). Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta, 317, 55–63.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Commission FP7 Programme through the Marie Curie Initial Training Network PROSENSE (grant no. 317420, 2012-2016). The financial support received from the Slovak Scientific Grant Agency VEGA 2/0162/14 and the Slovak Research and Development Agency APVV-14-0753 is acknowledged. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC grant agreement number 311532. This publication was made possible by NPRP grant number 6-381-1-078 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors. This publication is the result of the project implementation: centre for materials, layers and systems for applications and chemical processes under extreme conditions—Stage I, ITMS No.: 26240120007, supported by the Research & Development Operational Program funded by the ERDF. This publication is the result of the project implementation: centre for materials, layers and systems for applications and chemical processes under extreme conditions—Stage II, ITMS No.: 26240120021 supported by the Research & Development Operational Programme funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Katrlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damborský, P., Damborská, D., Belický, Š. et al. Sweet Strategies in Prostate Cancer Biomarker Research: Focus on a Prostate Specific Antigen. BioNanoSci. 8, 690–700 (2018). https://doi.org/10.1007/s12668-017-0397-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0397-z

Keywords

Navigation