Skip to main content
Log in

Effect of GDNF on Morphology, Proliferation, and Phagocytic Activity of Rat Neonatal Cortex Isolated Microglia

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Microglia are the main defenders of the central nervous system and at the same time are involved in the pathogenesis of various neurological disorders. Microglia hyperactivity or phagocytic impairment exacerbates degenerative processes in nervous tissue leading to further loss of function. A variety of factors and cytokines may modify microglia function. In our study, it was shown that glial cell line-derived neurotrophic factor (GDNF), a well-known neuroprotective molecule, decreases phagocytic activity of microglia in vitro model of spinal cord injury. Recombinant adenovirus encoding GDNF (Ad5-GDNF) transfected microglia have shown the same effect and can be potentially used as a therapeutic agent in case of neurotrauma due to its debris phagocytic and GDNF-associated neuroprotective role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ginhoux, F., Lim, S., Hoeffel, G., Low, D., Huber, T. (2013). Origin and differentiation of microglia. Frontiers in Cellular Neuroscience, 17, 7–45.

    Google Scholar 

  2. Jack, C., Ruffini, F., Bar-Or, A., Antel, J. P. (2005). Microglia and multiple sclerosis. Journal of Neuroscience Research, 81(3), 363–373.

    Article  Google Scholar 

  3. Brown, G. C., & Neher, J. J. (2014). Microglial phagocytosis of live neurons. Nature Review Neuroscience, 15(4), 209–216. doi:10.1038/nrn3710.

    Article  Google Scholar 

  4. Kim, J. Y., Kim, D. H., Kim, J. H., Lee, D., Jeon, H. B., Kwon, S. J., et al. (2012). Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death and Differentiation, 19(4), 680–691.

    Article  Google Scholar 

  5. Hickman, S. E., Allison, E. K., Khoury, E. (2008). Microglial disfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. Journal of Neuroscience, 28(33), 8354–60.

    Article  Google Scholar 

  6. Hanisch, U. K., & Kettenmann, H. (2007). Microglia: active sensorand versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10, 1387–1394.

    Article  Google Scholar 

  7. Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A.,Howells, D. W. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Journal of Neuroscience, 19, 1708–1716.

    Google Scholar 

  8. Cherry, J. D., Olschowka, J. A., O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 11, 98. doi:10.1186/1742-2094-11-98.

    Article  Google Scholar 

  9. Houenou, L. J., Oppenheim, R. W., Li, L., Lo, A. C., Prevette, D. (1996). Regulation of spinal motoneuron survival by GDNF during development and following injury. Cell and Tissue Research, 286(2), 219–223.

    Article  Google Scholar 

  10. Hottinger, A. F., Azzouz, M., Déglon, N., Aebischer, P., Zurn, A. D. (2000). Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. Journal of Neuroscience, 20(15), 5587–5593.

    Google Scholar 

  11. Hong, M., Mukhida, K., Mendez, I. (2008). GDNF therapy for Parkinson’s disease. Expert Review of Neurotherapeutics, 8(7), 1125–1139. doi:10.1586/14737175.8.7.1125.

    Article  Google Scholar 

  12. Li, F., Wang, M., Zhu, S., Li, L., Xiong, Y., Gao, D. S. (2013). The potential neuroprotection mechanism of GDNF in the 6-OHDA-induced cellular models of Parkinson’s Disease. Cellular and Molecular Neurobiology, 33(7), 907–919. doi:10.1007/s10571-013-9957-0.

    Article  Google Scholar 

  13. Corse, A. M., Bilak, M. M., Bilak, S. R., Lehar, M., Rothstein, J. D., Kuncl, R. W. (1999). Preclinical testing of neuroprotective neurotrophic factors in a model of chronic motor neuron degeneration. Neurobiology of Disease, 6(5), 335–346.

    Article  Google Scholar 

  14. Iwase, T., Jung, C. G., Bae, H., Zhang, M., Soliven, B. (2005). Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. Journal of Neurochemistry, 94, 1488–1499.

    Article  Google Scholar 

  15. Rocha, S. M., Cristovão, A. C., Campos, F. L., Fonseca, C. P., Baltazar, G. (2012). Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiology of Disease, 47(3), 407–415. doi:10.1016/j.nbd.2012.04.014. Epub 2012 May 3.

    Article  Google Scholar 

  16. Hӧke, A., Ho, T., Crawford, T. O., LeBel, C., Hilt, D., Griffin, J. W. (2003). Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers. Journal of Neuroscience, 23, 561–567.

    Google Scholar 

  17. Biju, K., Zhou, Q., Li, G., Imam, S. Z., Roberts, J. L., Morgan, W. W., Clark, R. A., Li, S. (2010). Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Molecular Therapy, 18(8), 1536–44. doi:10.1038/mt.2010.107.

    Article  Google Scholar 

  18. Cherenkova, E. E., Fedotova, V. Y., Islamov, R. R., Rizvanov, A. A. (2012). Creation of recombinant adenoviral and lentiviral genetic constructs using Gateway technology for expression of angiogenic and neuroprotective factors. Genes & cells, 7(3), 164–168.

    Google Scholar 

  19. Zhuravleva, M. N., Mukhamedshina, Y. O., Arkhipova, S. S., Sanatova, E. R., Rizvanov, A. A. (2015). The morphological and phenotypic characteristics of microglia at different stages of cultivation and transplantation in the area of spinal cord injury in rats. Genes & Cells, 10(4), 34–39.

    Google Scholar 

  20. Constantinescu, C. S., Farooqi, N., O’Brien, K., Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. doi:10.1111/j.1476-5381.2011.01302.x.

    Article  Google Scholar 

  21. Kang, J., Park, E. J., Jou, I., Kim, J. H., Joe, E. H. (2001). Reactive oxygen species mediate A beta (25-35)-induced activation of BV-2 microglia. Neuroreport, 12(7), 1449–1452.

    Article  Google Scholar 

  22. Pan, X. D., Zhu, Y. G., Lin, N., Zhang, J., Ye, Q. Y., Huang, H. P., Chen, X. C. (2011). Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Molecular Neurodegeneration, 30, 6–45.

    Google Scholar 

  23. Koenigsknecht-Talboo, J., & Landreth, G. E. (2005). Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. Journal of Neuroscience, 25(36), 8240–8249.

    Article  Google Scholar 

Download references

Acknowledgments

Y.O. Mukhamedshina was supported by a Presidential Grant for government support of young scientists (PhD) from the Russian Federation (MK-4020.2015.7). This work was performed in accordance with Program of Competitive Growth of Kazan Federal University and a subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Mukhamedshina.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, M., Rizvanov, A. & Mukhamedshina, Y. Effect of GDNF on Morphology, Proliferation, and Phagocytic Activity of Rat Neonatal Cortex Isolated Microglia. BioNanoSci. 6, 379–383 (2016). https://doi.org/10.1007/s12668-016-0247-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0247-4

Keywords

Navigation