Skip to main content
Log in

The Morphological Changes in the Internal Organs in Tumor-Bearing Rats at Intravenous Injection of Citrate-Stabilized Magnetite Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The usefulness of magnetite nanoparticles to improve contrast in magnetic resonance imaging (MRI) of tumor visualization was actively investigated currently. In this work, we conducted MRI and morphological examination of internal organs of 30 white outbred rats with transplanted liver tumor PC-1 after intravenous administration of magnetite hydrosols. Intravenous administration of citrate-stabilized magnetite nanoparticles in a dosage of 20 μg/kg and 16 mg/kg resulted in a disruption of blood filling of the organs, mainly due to the plethora. The dystrophic cell damage was observed in liver and in kidneys. The activation of immune processes in spleen was fixed after intravenous administration of citrate stabilized magnetite nanoparticles. In both doses, the nanoparticles were founded in the heart and brain, but the significant iron accumulation was detected in the tumor by methods of MRI and atomic absorption spectroscopy (AAS) only in dosage of 16 mg/kg. It is possible to conclude that selected dosage is sufficient for accumulation of nanoparticles in tumor, but it does not cause significant changes in the internal organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De, M., Ghosh, P. S., Rotello, V. M. (2008). Applications of nanoparticles in biology. Advanced Materials, 20, 4225–4241. doi:10.1002/adma.200703183.

    Article  Google Scholar 

  2. Levy, M., Lagarde, F., Maraloiu, V.-A., Blanchin, M.-G., Gendron, F., Wilhelm, C., et al. (2010). Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology, 21, 395103. doi:10.1088/0957-4484/21/39/395103.

    Article  Google Scholar 

  3. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110. doi:10.1021/cr068445e.

    Article  Google Scholar 

  4. Liz-Marzaґn, L. M., & Kamat, P. V. (2003). Nanoscale materials. Boston: Kluwer.

    Google Scholar 

  5. Kim, D. K., Zhang, Y., Voit, W., Rao, K. V., Muhammed, M. (2001). Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 225, 30–36. doi:10.1016/S0304-8853(00)01224-5.

    Article  Google Scholar 

  6. Zhang, Y., Kohler, N., Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561.

    Article  Google Scholar 

  7. Massia, S. P., Stark, J., Letbetter, D. S. (2000). Surface immobilized dextran limits cell adhesion and spreading. Biomaterials, 21, 2253–2261.

    Article  Google Scholar 

  8. Yu, J.-H., Lee, C.-W., Im, S.-S., Lee, J.-S. (2003). Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process. Reviews on Advanced Materials Science, 4, 55–59.

    Article  Google Scholar 

  9. Chen, M., Yamamuro, S., Farrell, D., Majetich, S. A. (2003). Gold-coated iron nanoparticles for biomedical applications. Journal of Applied Physics, 93, 7551. doi:10.1063/1.1555312.

    Article  Google Scholar 

  10. Lin, J., Zhou, W., Kumbhar, A., Fang, J., Carpenter, E. E., O’Connor, C. J. (2001). Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. Journal of Solid State Chemistry, 159, 26–31.

    Article  Google Scholar 

  11. Svenskaya, Y. I., Navolokin, N. A., Bucharskaya, A. B., Terentyuk, G. S., Kuz’mina, A. O., Burashnikova, M. M., et al. (2014). Calcium carbonate microparticles containing a photosensitizer photosens: preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies in Russia, 9, 398–409. doi:10.1134/S1995078014040181.

    Article  Google Scholar 

  12. Lubbe, A. S., Alexiou, C., Bergemann, C. (2001). Clinical applications of magnetic drug targeting. Journal of Surgical Research, 95, 200–206.

    Article  Google Scholar 

  13. Kaminski, M. D., & Rosengart, A. J. (2005). Detoxification of blood using injectable magnetic nanoparticles: a conceptual technology description. Journal of Magnetism and Magnetic Materials, 293, 398–403.

    Article  Google Scholar 

  14. Chin, A. B., & Yaacob, I. I. (2007). Synthesis and characterization of magnetic iron oxide nanoparticles via microemulsion and massart’s procedure. Journal of Materials Processing Technology, 191, 235–237.

    Article  Google Scholar 

  15. Albornoz, C., & Jacobo, S. E. (2006). Preparation of a biocompatible magnetic film from an aque-ous ferrofluid. Journal of Magnetism and Magnetic Materials, 305, 12–15.

    Article  Google Scholar 

  16. Kim, E. H., Lee, H. S., Kwak, B. K., Kim, B. K. (2005). Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials, 289, 328–330.

    Article  Google Scholar 

  17. Wan, J., Chen, X., Wang, Z., Yang, X., Qian, Y. (2005). A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Journal of Crystal Growth, 276, 571–576.

    Article  Google Scholar 

  18. Kimata, M., Nakagawa, D., Hasegawa, M. (2003). Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technology, 132, 112–118.

    Article  Google Scholar 

  19. German, S. V., Inozemtseva, O. A., Navolokin, N. A., Pudovkina, E. E., Zuev, V. V., Volkova, E. K., et al. (2013). Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using MRI and morphological investigation. Nanotechnologies in Russia, 8, 573–580. doi:10.1134/S1995078013040034.

    Article  Google Scholar 

  20. Sizova, E., Miroshnikov, S., Yausheva, E., Polyakova, V. (2015). Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates. BioMed Research International. Article ID 243173, 7 pages. doi:10.1155/2015/243173.

  21. Navolokin, N. A., Maslyakova, G. N., Bucharskya, A. B., Kong, X. M. (2012). Morphological changes in the kidney, liver and spleen during prolonged administration of iron nanoparticles. Journal of Physics: Conference Series. doi:10.1088/1742-6596/345/1/012043.

    Google Scholar 

  22. Prodan, A. M., Iconaru, S. L., Ciobanu, C. S., Chifiriuc, M. C., Stoicea, M., Predoi, D. (2013). Iron oxide magnetic nanoparticles: characterization and toxicity evaluation by in vitro and in vivo assays. Journal of Nanomaterials. doi:10.1155/2013/587021.

    Google Scholar 

  23. German, S. V., Navolokin, N. A., Kuznetsova, N. R., Zuev, V. V., Inozemtseva, O. A., Anis, A. A., et al. (2015). Liposomes loaded with hydrophilic magnetite nanoparticles: preparation and application as contrast agents for magnetic resonance imaging. Colloids and Surfaces B: Biointerfaces, 135, 109–115. doi:10.1016/j.colsurfb.2015.07.042.

    Article  Google Scholar 

  24. German, S. V., Inozemtseva, O. A., Markin, A. V., Metvalli, K., Khomutov, G. B., Gorin, D. A. (2013). Synthesis of magnetite hydrosols in inert atmosphere. Colloid Journal, 75, 483–486.

    Article  Google Scholar 

  25. Dzamukova, M. R., Naumenko, E. A., Rozhina, E. V., Trifonov, A. A., Fakhrullin, R. F. (2015). Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: a facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Research, 8(8), 2515–2532.

    Article  Google Scholar 

  26. International Guiding Principles for Biomedical Research Involving Animals (2012) http://www.cioms.ch/index.php/12-newsflash/227-cioms-and-iclas-release-the-new-international-guidingprinciples-for-biomedical-research-involving-animals.

Download references

Acknowledgments

The work was supported by the Government of the Russian Federation (grant no.14.Z50.31.0004 to support scientific research projects implemented under the supervision of leading scientists at Russian institutions and Russian institutions of higher education) and the Russian Scientific Foundation (project no. 14-15-00128) and Saratov State University. The work done by NAN was supported by the Russian President’s Scholarship SP-523.2016.4 (2016-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla B. Bucharskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navolokin, N.A., Bucharskaya, A.B., German, S.V. et al. The Morphological Changes in the Internal Organs in Tumor-Bearing Rats at Intravenous Injection of Citrate-Stabilized Magnetite Nanoparticles. BioNanoSci. 6, 162–168 (2016). https://doi.org/10.1007/s12668-016-0200-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0200-6

Keywords

Navigation