Skip to main content
Log in

Ficus carica (Fig) Fruit Mediated Green Synthesis of Silver Nanoparticles and its Antioxidant Activity: a Comparison of Thermal and Ultrasonication Approach

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this report, the thermal and ultrasonication approach was investigated for the synthesis of silver nanoparticles (AgNPs) using Ficus carica (Fig) fruit extract and the results were compared. The AgNPs were characterized using UV–visible spectroscopy, Transmission electron microscopy, dynamic light scattering, and X-ray diffraction and further evaluated their antioxidant activity. Various analytical characterizations showed that thermal and ultrasonication approaches can reduce Ag+ ions to AgNPs at λ max = 430–440 and 430–435 nm, with diameters around 20–80 nm and 10–30 nm, respectively. However, AgNPs synthesized by thermal heating were spherical, with bigger size, and aggregated, whereas ultrasonication can produce spherical, smaller size, and non-aggregated AgNPs. At lower concentrations (40 μg/mL), it showed enhanced antioxidant activity in comparison to the F. carica fruit extract (AgNPsultrasonication, 34.99 % > AgNPsthermal, 21.59 % > F. carica fruit extract, 15.47 %) against 1,1-diphenyl-2-picrylhydrazyl (DPPH·). This simple and environmentally safe biosynthetic approach for AgNPs is attractive and can produce size-controlled AgNPs of utility for various nanomedicine concerns.

Schematic illustration of the green synthesis of silver nanoparticles under thermal and ultrasonication approach

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghaedi, M., Yousefinejad, M., Safarpoor, M., Zare Khafri, H., Purkait, M. K. (2015). Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Journal of Industrial and Engineering Chemistry, 31, 167–172.

    Article  Google Scholar 

  2. Singh, M., Manikandan, S., Kumaraguru, A. K. (2010). Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology, 1(1), 1–11.

    Article  Google Scholar 

  3. Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52(6), 1636–1653.

    Article  Google Scholar 

  4. Rizzello, L., & Pompa, P. P. (2014). Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 43(5), 1501–1518.

    Article  Google Scholar 

  5. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Industrial Crops and Products, 58, 238–243.

    Article  Google Scholar 

  6. Li, J., Chen, X., Ai, N., Hao, J., Chen, Q., Strauf, S., et al. (2011). Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chemical Physics Letters, 514, 141–145.

    Article  Google Scholar 

  7. Wei, D., & Qian, W. (2008). Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloid Surface B, 62, 136–142.

    Article  Google Scholar 

  8. Kumar, B., Smita, K., Cumbal, L., Debut, A., Pathak, R.N. (2014). Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl. Article ID 784268, 8 pages.

  9. Callegari, A., Tonti, D., Chergui, M. (2003). Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Letters, 3, 1565–1568.

    Article  Google Scholar 

  10. Yin, B., Ma, H., Wang, S., Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). Journal of Physical Chemistry B, 107, 8898–8904.

    Article  Google Scholar 

  11. Raffi, M., Akhter, J. I., Hasan, M. M. (2006). Effect of annealing temperature on Ag nano-composite synthesized by sol–gel. Materials Chemistry and Physics, 99, 405–409.

    Article  Google Scholar 

  12. Kumar, B., Smita, K., Cumbal, L., Debut, A., Pathak, R. N. (2016). Ionic liquid based silica tuned silver nanoparticles: novel approach for fabrication. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. doi:10.1080/15533174.2015.1004451.

    Google Scholar 

  13. Koch, C. C. (1993). The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostructured Materials, 2, 109–129.

    Article  Google Scholar 

  14. Wang, S., Zhang, Y., Ma, H. L., Zhang, Q., Xu, W., Peng, J., et al. (2013). Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon, 55, 245–252.

    Article  Google Scholar 

  15. Mohammadinejad, R., Karimi, S., Iravani, S., Varma, R. S. (2015). Plant-derived nanostructures: types and applications. Green Chemistry. doi:10.1039/c5gc01403d.

    Google Scholar 

  16. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2015). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., in press, doi:10.1016/j.sjbs.2015.09.006.

  17. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014) Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J. Saudi Chem. Soc., in press, doi: 10.1016/j.jscs.2014.03.005.

  18. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2014). Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi Journal of Biological Sciences, 21(6), 605–609.

    Article  Google Scholar 

  19. Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22, 577–583.

    Article  Google Scholar 

  20. Kumar, B., Smita, K., Cumbal, L. (2016). Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. Journal of Sol-Gel Science and Technology. doi:10.1007/s10971-015-3941-8.

    Google Scholar 

  21. Vijayaraghavan, K., Kamala Nalini, S. P., Udaya Prakash, N., Madhankumar, D. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Material Letters, 75, 33–35.

    Article  Google Scholar 

  22. Kumar, B., Smita, K., Cumbal, L., Angulo, Y. (2015). Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: a sustainable approach. Journal of Molecular Liquids, 211, 476–480.

    Article  Google Scholar 

  23. Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10, 859–862.

    Article  Google Scholar 

  24. Mawa, A.S., Husain, K., Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evidence-Based Complementary and Alternative Medicine, volume 2013, Article ID 974256, 8 pages.

  25. Guarrera, P. M. (2005). Traditional phytotherapy in central Italy (Marche, Abruzzo, and Latium). Fitoterapia, 76(1), 1–25.

    Article  Google Scholar 

  26. Kumar, B., Smita, K., Cumbal, L., Debut, A. (2015). Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity. Journal of Saudi Chemical Society, 19, 574–580.

    Article  Google Scholar 

  27. Papavassiliou, G. C. (1979). Optical properties of small inorganic and organic metal particles. Progress in Solid State Chemistry, 12, 185–271.

    Article  Google Scholar 

  28. Zareab, D., Khoshnevisanb, K., Barkhibc, M., Tahami, H. V. (2014). Fabrication of capped gold nanoparticles by using various amino acids. Journal of Experimental Nanoscience, 9(9), 957–965.

    Article  Google Scholar 

  29. Kumar, B., Angulo, Y., Smita, K., Cumbal, L., Debut, A. (2015). Capuli (Prunus serotina Ehrh. var. Capuli) cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light: a comparison. Particuology, in press, doi:10.1016/j.partic.2015.05.005.

  30. Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494–502.

    Article  Google Scholar 

Download references

Acknowledgments

This scientific work has been funded by the Universidad de las Fuerzas Armadas ESPE and Prometeo Project of the National Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Smita, K., Cumbal, L. et al. Ficus carica (Fig) Fruit Mediated Green Synthesis of Silver Nanoparticles and its Antioxidant Activity: a Comparison of Thermal and Ultrasonication Approach. BioNanoSci. 6, 15–21 (2016). https://doi.org/10.1007/s12668-016-0193-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0193-1

Keywords

Navigation