Skip to main content
Log in

Effective Potentiality of Synthesised CdS Nanoparticles in Inducing Genetic Variation on Macrotyloma uniflorum (Lam.) Verdc.

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present investigation encompasses chemical synthesis and characterisation (UV-visible spectra (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM)) of cadmium sulphide nanoparticles (CdS-NPs; quantum dots, possessing unique photo-physicochemical properties) and its potentiality to induce heritable phenotypic changes in Macrotyloma uniflorum (Lam.) Verdc. (Leguminosae; annual herb with therapeutic and nutritional uses). Dry seeds (moisture content 11.41 %) are exposed (3.2, 6.4, 12.7 and 19.1 μg mL−1, 24- and 48-h durations) to CdS-NPs (size: 1.2 to 2.2 nm; shape: cubic to spherical) and bulk CdS (3.2 μg mL−1, 24 h). Dissolution potentiality measured in in vitro system (using dialysis bags) shows high diffusibility (73.5 % ± 2.04 to 77.2 % ± 3.01) from lower (3.2 μg mL−1) to higher (19.1 μg mL−1) concentrations suggesting its effective penetration in in vivo system (seeds) as well. Accumulation of CdS-NPs and bulk CdS in seedlings (Petri plate germinated) is also studied in the form of Cd2+ by atomic absorption spectroscopy (AAS). CdS-NPs induce five phenotypic variants (two non-viable: ‘viridis’ and ‘glossy leaf’; three viable: ‘broad elongated leaf’, ‘bushy’ and ‘unbranched’) at M2. Selfed seeds of the variants segregated (either 3:1 or 1:1) at M3 in accordance with Mendelian pattern confirming them to be macromutants. The phenotypic mutants show normal meiotic chromosome behaviour alike to control plants (2n = 20) but with lower pollen fertility. The mutants bred true at M4 generation. ‘Broad elongated leaf’ and ‘bushy’ mutants are highly productive types (in relation to seed yield) in comparison to control plants. ‘Unbranched’ phenotype can be an important genetic resource for efficient breeding. CdS-NPs inducing heritable phenotypic changes open up the possibility of using them as an alternative source for conventional mutagens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christian, P., Von der Kammer, F., Baalousha, M., Hofmann, T. (2008). Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17, 326–343. doi:10.1007/s10646-008-0213-1.

    Article  Google Scholar 

  2. Biswas, P., & Wu, C. Y. (2005). Critical review: nanoparticles and the environment. Journal of the Air and Waste Management Association, 55, 708–746. doi:10.1080/10473289.2005.10464656.

    Article  Google Scholar 

  3. Buzea, C., Pacheco, I. I., Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, MR17–MR71. doi:10.1116/1.2815690.

    Article  Google Scholar 

  4. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5–22. doi:10.1016/j.envpol.2007.06.006.

    Article  Google Scholar 

  5. Tervonen, T., Linkov, I., Figueira, J. R., Steevens, J., Chappell, M., Merad, M. (2009). Risk-based classification system of nanomaterials. Journal of Nanoparticle Research, 11, 757–766. doi:10.1007/s11051-008-9546-1.

    Article  Google Scholar 

  6. Lidén, G. (2011). The European commission tries to define nanomaterials. Annals of Occupational Hygiene, 55, 1–5. doi:10.1093/annhyg/meq092.

    Article  Google Scholar 

  7. Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59, 3485–3498. doi:10.1021/jf104517j.

    Article  Google Scholar 

  8. Tan, X. M., & Fugetsu, B. (2007). Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. Journal of Biomedical Nanotechnology, 3, 285–288. doi:10.1166/jbn.2007.035.

    Article  Google Scholar 

  9. Landsiedel, R., Kapp, M. D., Schulz, M., Wiench, K., Oesch, F. (2009). Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutation Research, 681, 2412–2458. doi:10.1016/j.mrrev.2008.10.002.

    Google Scholar 

  10. Kumari, M., Mukherjee, A., Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407, 5243–5246. doi:10.1016/j.scitotenv.2009.06.024.

    Article  Google Scholar 

  11. Tan, X. M., Lin, C., Fugetsu, B. (2009). Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 47, 3479–3487. doi:10.1016/j.carbon.2009.08.018.

    Article  Google Scholar 

  12. Kovacic, P., & Somanathan, R. (2010). Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species. Journal of Nanoscience and Nanotechnology, 10, 7919–7930. doi:10.1166/jnn.2010.3028.

    Article  Google Scholar 

  13. Shen, C. X., Zhang, Q. F., Li, J., Bi, F. C., Yao, N. (2010). Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany, 97, 1602–1609. doi:10.3732/ajb.1000073.

    Article  Google Scholar 

  14. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., et al. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105, 269–279. doi:10.1385/BTER:105:1-3:269.

    Article  Google Scholar 

  15. Lei, Z., Mingyu, S., Chao, L., Liang, C., Hao, H., Xiao, W., et al. (2007). Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119, 68–76. doi:10.1007/s12011-007-0047-3.

    Article  Google Scholar 

  16. Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., et al. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals, 21, 211–217. doi:10.1007/s10534-007-9110-y.

    Article  Google Scholar 

  17. Masarovičová, E., & Kráľová, K. (2013). Metal nanoparticles and plants. Ecological Chemistry and Engineering S, 20, 9–22. doi:10.2478/eces-2013-0001.

    Google Scholar 

  18. Manickathai, K., Viswanathan, S. K., Alagar, M. (2008). Synthesis and characterization of CdO and CdS nanoparticles. Indian Journal of Pure and Applied Physics, 46, 561–564.

    Google Scholar 

  19. Philip, D. (2010). Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77, 807–810. doi:10.1016/j.saa.2010.08.008.

    Article  Google Scholar 

  20. Scrinis, G., & Lyons, K. (2007). The emerging nano-corporate paradigm: Nanotechnology and the transformation of nature, food and agri-food systems. International Journal of Sociology of Agriculture and Food, 15, 22–44.

    Google Scholar 

  21. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., Sakthi Kumar, D. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163. doi:10.1016/j.plantsci.2010.04.012.

    Article  Google Scholar 

  22. Halder, S., Mandal, A., Das, D., Gupta, S., Chattopadhyay, A. P., Datta, A. K. (2015). Copper nanoparticle induced macromutation in Macrotyloma uniflorum (Lam.) Verdc. (Family: Leguminosae): a pioneer report. Genetic Resources and Crops Evolution, 62, 165–175. doi:10.1007/s10722-015-0216-8.

    Article  Google Scholar 

  23. Khataee, A., Movafeghi, A., Nazari, F., Vafaei, F., Dadpour, M. R., Hanifehpour, Y., et al. (2014). The toxic effects of L-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. Journal of Nanoparticle Research, 16, 2774. doi:10.1007/s11051-014-2774-7.

    Article  Google Scholar 

  24. Jiang, R., Zhu, H., Li, X., Xiao, L. (2009). Visible light photocatalytic decolourization of CI Acid Red 66 by chitosan capped CdS composite nanoparticles. Chemical Engineering Journal, 152, 537–542. doi:10.1016/j.cej.2009.05.037.

    Article  Google Scholar 

  25. Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446. doi:10.1038/nmat1390.

    Article  Google Scholar 

  26. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544. doi:10.1126/science.1104274.

    Article  Google Scholar 

  27. Shen, Y. J., & Lee, Y. L. (2008). Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology, 19, 1–7. doi:10.1088/0957-4484/19/04/045602.

    Google Scholar 

  28. Jagadeesh, E., Khan, B., Chandran, P., Khan, S. S. (2015). Toxic potential of iron oxide, CdS/Ag2S composite, CdS and Ag2S NPs on a fresh water alga Mougeotia sp. Colloids and Surfaces B: Biointerfaces, 125, 284–290. doi:10.1016/j.colsurfb.2014.11.008.

    Article  Google Scholar 

  29. Munari, M., Sturve, J., Frenzilli, G., Sanders, M. B., Brunelli, A., Marcomini, A., et al. (2014). Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2). Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 775–776, 89–93. doi:10.1016/j.mrgentox.2014.09.003.

    Article  Google Scholar 

  30. Morris, J. B. (2008). Macrotyloma axillare and M. uniflorum: descriptor analysis, anthocyanin indexes and potential uses. Genetic Resources and Crops Evolution, 55, 5–8. doi:10.1007/s10722-007-9298-2.

    Article  Google Scholar 

  31. Brock, R.D. (1976). Prospects and perspectives in mutation breeding. In A. Muhammed, R. Aksel, R.C.von Borstel (Eds.), Genetic diversity in plants, part II, series title: Basic life sci, vol. 8 (pp. 117–132). New York: Plenum. doi:10.1007/978-1-4684-2886-5_12.

  32. Kharkwal MC (2012) Impact of mutation breeding in global agriculture. In: Abstract volume of the National Symposium on Plant Cytogenetics: New Approaches-2012, Department of Botany, Punjabi University, Patiala, India, p. 31.

  33. Salem, H. F., Eid, K. A. M., Sharaf, M. A. (2011). Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. International Journal of Drug Delivery, 3, 293–304.

    Google Scholar 

  34. Gao, Y., Zuo, J., Bou-Chacra, N., Pinto Tde, J., Clas, S. D., Walker, R. B., et al. (2013). In vitro release kinetics of antituberculosis drugs from nanoparticles assessed using a modified dissolution apparatus. Biomed Research International, 2013, 136590. doi:10.1155/2013/136590.

    Google Scholar 

  35. Konzak, C. F., Nilan, R. A., Wagner, J., Foster, R. J. (1965). Efficient chemical mutagenesis. The use of induced mutagenesis in plant breeding. Radiation Botany, 75, 49–70.

    Google Scholar 

  36. Gaul, H. (1964). Mutations in plant breeding. Radiation Botany, 4, 155–232. doi:10.1016/S0033-7560(64)80069-7.

    Article  Google Scholar 

  37. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15. doi:10.1104/pp.24.1.1.

    Article  Google Scholar 

  38. Marks, G. E. (1954). An aceto-carmine glycerol jelly for use in pollen-fertility counts. Stain Technology, 29, 277. doi:10.3109/10520295409115483.

    Google Scholar 

  39. Prabhu, R. R., & Khadar, M. A. (2005). Characterization of chemically synthesized CdS nanoparticles. Pramana, 65, 801–807. doi:10.1007/BF02704078.

    Article  Google Scholar 

  40. Patel, N. H., Deshpande, M. P., Bhatt, S. V., Patel, K. R., Chaki, S. H. (2014). Structural and magnetic properties of undoped and Mn doped CdS nanoparticles prepared by chemical co-precipitation method. Advanced Materials Letters, 5, 671–677. doi:10.5185/amlett.2014.1574.

    Google Scholar 

  41. Zhang, A.-Q., Tan, Q.-Z., Li, H.-J., Sui, L., Qian, D. J., Chen, M. (2014). pH-Dependent shape changes of water-soluble CdS nanoparticles. Journal of Nanoparticle Research, 16, 2197. doi:10.1007/s11051-013-2197-x.

    Article  Google Scholar 

  42. Mercy, A., Selvaraj, R. S., Boaz, B. M., Anandhi, A., Kanagadurai, R. (2013). Synthesis, structural and optical characterisation of cadmium sulphide nanoparticles. Indian Journal of Pure and Applied Physics, 51, 448–452.

    Google Scholar 

  43. Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., et al. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science and Technology, 46, 1819–1827. doi:10.1021/es202660k.

    Article  Google Scholar 

  44. Shi, J., Abid, A. D., Kennedy, I. M., Hristova, K. R., Silk, W. K. (2011). To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 159, 1277–1282. doi:10.1016/j.envpol.2011.01.028.

    Article  Google Scholar 

  45. Mushtaq, Y. K. (2011). Effect of nanoscale F3O4, TiO2 and carbon particles on cucumber seedlings germination. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 46, 1732–1735. doi:10.1080/10934529.

    Article  Google Scholar 

  46. Stampoulis, D., Sinha, S. K., White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43, 9473–9479. doi:10.1021/es901695c.

    Article  Google Scholar 

  47. Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J., et al. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29, 669–675. doi:10.1002/etc.58.

    Article  Google Scholar 

  48. Bolbhat, S. N., & Dhumal, K. N. (2009). Induced macromutations in horsegram [Macrotyloma uniflorum (Lam.) Verdc]. Legume Research An International Journal, 32, 278–281.

    Google Scholar 

  49. Ghosh, M., Bandyopadhyay, M., Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81, 1253–1262. doi:10.1016/j.chemosphere.2010.09.022.

    Article  Google Scholar 

  50. Rodriguez, E., Azevedo, R., Fernandes, P., Santos, C. (2011). Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chemical Research in Toxicology, 24, 1040–1047. doi:10.1021/tx2001465.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) Programme, University of Kalyani, is gratefully acknowledged. The authors are thankful to the authority of Medicinal Plant Garden, Narendrapur Ramkrishna Mission, Government of West Bengal, India, for generous supply of seed samples. The authors are also thankful to Centre for Research in Nanoscience & Nanotechnology (CRNN), University of Calcutta, West Bengal (for FESEM, HRTEM and DLS studies), Geological Survey of India (GSI), Kolkata (XRD analysis), and Department of Zoology, University of Kalyani (AAS analysis), for various help. The authors are sincerely indebted to the anonymous reviewers for providing valuable suggestions.

Conflict of Interest

The authors declare that they have no competing interests.

Compliance with Ethical Standards

The research does not include any animals including human beings. Informed consent in this regard is not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Kumar Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, S., Mandal, A., Das, D. et al. Effective Potentiality of Synthesised CdS Nanoparticles in Inducing Genetic Variation on Macrotyloma uniflorum (Lam.) Verdc.. BioNanoSci. 5, 171–180 (2015). https://doi.org/10.1007/s12668-015-0176-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-015-0176-7

Keywords

Navigation