Skip to main content
Log in

Preparation and Characterization of Multiwall Carbon Nanotube (MWCNT) Reinforced Chitosan Nanocomposites: Effect of Gamma Radiation

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanocomposites of biodegradable chitosan and multiwalled carbon nanotubes (MWCNTs) were prepared using two kinds of MWCNTs, i.e., pristine multiwalled carbon nanotubes (p-MWCNTs) and carboxyl-functionalized multiwalled carbon nanotubes (f-MWCNTs). The nanocomposites were subjected to gamma irradiation (60Co) at different intensities (1–50 kGy), and the variation of different physicomechanical properties has been extensively studied. Various techniques such as Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), optical microscopy (OM), thermogravimetric analysis (TGA), differential scanning colorimetry (DSC), and universal testing machine (UTM) were used to investigate the physicochemical, morphological, and thermomechanical properties of the nanocomposites. FTIR spectra and OM confirmed that oxygen-containing functional groups were present on the surface of the tubes that helped better dispersion of f-MWCNTs in chitosan solution. The experimental results demonstrated that the tensile strength (TS) and modulus (TM) of nanocomposites were increased by 57 and 48 %, respectively, through the addition of 1 % MWCNTs with the chitosan matrix; however, no significant changes of TS and TM are observed for more MWCNTs (above 1 %) in the composites. Considering the effect of irradiation doses, it was observed that low irradiation doses (up to 10 kGy) significantly increases thermal stability and tensile properties of the nanocomposite compared with the nonirradiated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ajayan, P., Stephan, O., Colliex, C., Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science, 265(5176), 1212–1214.

    Article  Google Scholar 

  2. Ajayan, P. M., Schadler, L. S., Giannaris, C., Rubio, A. (2000). Single-walled carbon nanotube–polymer composites: strength and weakness. Advanced Materials, 12(10), 750–753.

    Article  Google Scholar 

  3. Wang, S.-F., Shen, L., Zhang, W.-D., Tong, Y.-J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6(6), 3067–3072.

    Article  Google Scholar 

  4. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 18(11), 1345–1360.

    Article  Google Scholar 

  5. Liu, C., Zhang, J., He, J., Hu, G. (2003). Gelation in carbon nanotube/polymer composites. Polymer, 44(24), 7529–7532.

    Article  Google Scholar 

  6. Paiva, M., Zhou, B., Fernando, K., Lin, Y., Kennedy, J., Sun, Y.-P. (2004). Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon, 42(14), 2849–2854.

    Article  Google Scholar 

  7. Liu, C., Hu, Z., Wu, Q., Wang, X., Chen, Y., Sang, H., et al. (2005). Vapor-solid growth and characterization of aluminum nitride nanocones. Journal of the American Chemical Society, 127(4), 1318–1322.

    Article  Google Scholar 

  8. Venkatesan, J., & Kim, S.-K. (2010). Chitosan composites for bone tissue engineering—an overview. Marine Drugs, 8(8), 2252–2266.

    Article  Google Scholar 

  9. Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., et al. (2009). Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Letters, 9(9), 3137–3141.

    Article  Google Scholar 

  10. Hirsch, A., Vostrowsky, O. (2005). Functionalization of carbon nanotubes. In: Functional molecular nanostructures. Springer, pp 193–237

  11. Montoro, L. A., & Rosolen, J. M. (2006). A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon, 44(15), 3293–3301.

    Article  Google Scholar 

  12. Hou, P., Bai, S., Yang, Q., Liu, C., Cheng, H. (2002). Multi-step purification of carbon nanotubes. Carbon, 40(1), 81–85.

    Article  Google Scholar 

  13. Hou, P.-X., Liu, C., Cheng, H.-M. (2008). Purification of carbon nanotubes. Carbon, 46(15), 2003–2025.

    Article  Google Scholar 

  14. Moridi, Z., Mottaghitalab, V., Haghi, A. (2011). A detailed review of recent progress in carbon nanotube/chitosan nanocomposites. Cellulose Chemistry and Technology, 45(9), 549.

    Google Scholar 

  15. Quemeneur, F., Rammal, A., Rinaudo, M., Pépin-Donat, B. (2007). Large and giant vesicles “decorated” with chitosan: effects of pH, salt or glucose stress, and surface adhesion. Biomacromolecules, 8(8), 2512–2519.

    Article  Google Scholar 

  16. Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133–1142.

    Article  Google Scholar 

  17. Krajewska, B. (2004). Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35(2), 126–139.

    Article  Google Scholar 

  18. Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., Madihally, S. V. (2005). In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616–7627.

    Article  Google Scholar 

  19. Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., et al. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129–138.

    Article  Google Scholar 

  20. Leffler, C. C., & Müller, B. W. (2000). Influence of the acid type on the physical and drug liberation properties of chitosan–gelatin sponges. International Journal of Pharmaceutics, 194(2), 229–237.

    Article  Google Scholar 

  21. Rashid, T. U., Rahman, M. M., Kabir, S., Shamsuddin, S. M., Khan, M. A. (2012). A new approach for the preparation of chitosan from γ‐irradiation of prawn shell: effects of radiation on the characteristics of chitosan. Polymer International, 61(8), 1302–1308.

    Article  Google Scholar 

  22. Kume, T., Takehisa, M. (1982). Effect of gamma-irradiation on chitosan. In: Proceedings of the 2nd International Conference on Chitin and Chitosan, 66–70

  23. Wasikiewicz, J. M., Yoshii, F., Nagasawa, N., Wach, R. A., Mitomo, H. (2005). Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry, 73(5), 287–295.

    Article  Google Scholar 

  24. Martínez-Morlanes, M., Castell, P., Alonso, P., Martinez, M. T., Puértolas, J. (2012). Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon, 50(7), 2442–2452.

    Article  Google Scholar 

  25. Li, N., He, B., Xu, S., Yuan, J., Miao, J., Niu, L., et al. (2012). In site formation and growth of Prussian blue nanoparticles anchored to multiwalled carbon nanotubes with poly (4-vinylpyridine) linker by layer-by-layer assembly. Materials Chemistry and Physics, 133(2), 726–734.

    Article  Google Scholar 

  26. Yang, Y., Zou, H., Wu, B., Li, Q., Zhang, J., Liu, Z., et al. (2002). Enrichment of large-diameter single-walled carbon nanotubes by oxidative acid treatment. The Journal of Physical Chemistry B, 106(29), 7160–7162.

    Article  Google Scholar 

  27. Mizanur Rahman, M., Kabir, S., Ur Rashid, T., Nesa, B., Nasrin, R., Haque, P., Khan, M. A. (2012). Effect of< i> γ</i>−Irradiation on the Thermomechanical and Morphological Properties of Chitosan Obtained from Prawn Shell: Evaluation of Potential for Irradiated Chitosan as Plant Growth Stimulator for Malabar spinach. Radiation Physics and Chemistry

  28. Rama Sreekanth, P., Naresh Kumar, N., Kanagaraj, S. (2012). Improving post irradiation stability of high density polyethylene by multi walled carbon nanotubes. Composites Science and Technology, 72(3), 390–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mizanur Rahman.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, A., Rashid, T.U., Khan, M.A. et al. Preparation and Characterization of Multiwall Carbon Nanotube (MWCNT) Reinforced Chitosan Nanocomposites: Effect of Gamma Radiation. BioNanoSci. 5, 31–38 (2015). https://doi.org/10.1007/s12668-014-0159-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0159-0

Keywords

Navigation