Skip to main content
Log in

Detailed AFM Force Spectroscopy of the Interaction Between CD44–IgG Fusion Protein and Hyaluronan

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) force spectroscopy was used to study the single-molecule rupture events of the interaction between hyaluronan (HA) and the binding domain of its cell surface receptor CD44. AFM probes were amino terminated with 3-aminopropyl triethoxy silane (APTES) followed by covalent coupling of protein A, enabling the binding of the CD44–HA-binding domain, as part of a CD44–Fc fusion protein. HA was covalently bound to APTES-coated silicon surfaces. Single-rupture events were recorded at various loading rates revealing an energy barrier: E b = 24 ± 1 kT and characteristic distance: x β = 1.3 ± 0.1 nm for this interaction. This quantification will be of interest in applications and research involving the use of the CD44–Fc fusion protein since we observe a weaker interaction between HA and CD44–Fc than what has been reported for the entire native CD44 molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carter, P. J. (2011). Introduction to current and future protein therapeutics: a protein engineering perspective. Experimental Cell Research, 317, 1261–1269. doi:10.1016/j.yexcr.2011.02.013.

    Article  Google Scholar 

  2. Czajkowsky, D. M., Hu, J., Shao, Z., Pleass, R. J. (2012). Fc-fusion proteins: new developments and future perspectives. EMBO Molecular Medicine, 4, 1015–1028. doi:10.1002/emmm.201201379.

    Article  Google Scholar 

  3. Huang, C. (2009). Receptor-Fc fusion therapeutics, traps, and MIMETIBODY (TM) technology. Current Opinion in Biotechnology, 20, 692–699. doi:10.1016/j.copbio.2009.10.010.

    Article  Google Scholar 

  4. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313. doi:10.1016/0092-8674(90)90694-A.

    Article  Google Scholar 

  5. Lee, J. Y., & Spicer, A. P. (2000). Hyaluronan: a multifunctional, megaDalton, stealth molecule. Current Opinion in Cell Biology, 12, 581–586. doi:10.1016/s0955-0674(00)00135-6.

    Article  Google Scholar 

  6. Misra, S., Heldin, P., Hascall, V. C., Karamanos, N. K., Skandalis, S. S., Markwald, R. R., et al. (2011). Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS Journal, 278, 1429–1443. doi:10.1111/j.1742-4658.2011.08071.x.

    Article  Google Scholar 

  7. Necas J, Bartosikova, L, Brauner, P, Kolar, J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med-Czech 53:397–411. doi: not available

  8. Zhang LR, Underhill, CB, Chen, LP (1995) Hyaluronan on the surface of tumor cells is correlated with metastatic behaviour. Cancer Res 55:428–433. doi: not available

  9. Mizrahy, S., Rebe Raz, S., Hasgaard, M., Liu, H., Soffer-Tsur, N., Cohen, K., et al. (2011). Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. Journal of Controlled Release, 156, 231–238. doi:10.1016/j.jconrel.2011.06.031.

    Article  Google Scholar 

  10. Fujimoto, T., Kawashima, H., Tanaka, T., Hirose, M., Toyama-Sorimachi, N., Matsuzawa, Y., et al. (2001). CD44 binds a chondroitin sulfate proteoglycan, aggrecan. International Immunology, 13, 359–366. doi:10.1093/intimm/13.3.359.

    Article  Google Scholar 

  11. Toyamasorimachi, N., Sorimachi, H., Tobita, Y., Kitamura, F., Yagita, H., Suzuki, K., et al. (1995). A novel ligand for CD44 is serglycin, a hematopoietic-cell lineage-specific proteoglycan—possible involvement in lymphoid cell adherence and activation. Journal of Biological Chemistry, 270, 7437–7444. doi:10.1074/jbc.270.13.7437.

    Article  Google Scholar 

  12. Lamontagne, C.-A., & Grandbois, M. (2008). PKC-induced stiffening of hyaluronan/CD44 linkage; local force measurements on glioma cells. Experimental Cell Research, 314, 227–236. doi:10.1016/j.yexcr.2007.07.013.

    Article  Google Scholar 

  13. Lamontagne, C.-A., Plante, G. E., Grandbois, M. (2011). Characterization of hyaluronic acid interaction with calcium oxalate crystals: implication of crystals faces, pH and citrate. Journal of Molecular Recognition, 24, 733–740. doi:10.1002/jmr.1110.

    Article  Google Scholar 

  14. Raman, P. S., Alves, C. S., Wirtz, D., Konstantopoulos, K. (2012). Distinct kinetic and molecular requirements govern CD44 binding to hyaluronan versus fibrin(ogen). Biophysical Journal, 103, 415–423. doi:10.1016/j.bpj.2012.06.039.

    Article  Google Scholar 

  15. Butt, H. J., Cappella, B., Kappl, M. (2005). Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 59, 1–152. doi:10.1016/j.surfrep.2005.08.003.

    Article  Google Scholar 

  16. Evans E, Ritchie, K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555. doi:

  17. Evans, E. B. (1999). Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophysical Chemistry, 82, 83–97. doi:10.1016/s0301-4622(99)00108-8.

    Article  Google Scholar 

  18. Martens, A. A., Besseling, N. A. M., Rueb, S., Sudhölter, E. J. R., Spaink, H. P., de Smet, L. C. P. M. (2011). Random scission of polymers: numerical simulations, and experiments on hyaluronan hydrolysis. Macromol, 44, 2559–2567. doi:10.1021/ma200009y.

    Article  Google Scholar 

  19. Banerji, S., Wright, A. J., Noble, M., Mahony, D. J., Campbell, I. D., Day, A. J., et al. (2007). Structures of the Cd44–hyaluronan complex provide insight into a fundamental carbohydrate protein interaction. Nature Structural and Molecular Biology, 14, 234–239. doi:10.1038/nsmb1201.

    Article  Google Scholar 

  20. Attili, S., & Richter, R. P. (2012). Combining colloidal probe atomic force and reflection interference contrast microscopy to study the compressive mechanics of hyaluronan brushes. Langmuir, 28, 3206–3216. doi:10.1021/la204602n.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Bram van den Broek (Leiden University, The Netherlands, currently at the Netherlands Cancer Institute, The Netherlands) for the fruitful discussions and Jesper Koning (Delft University of Technology and Leiden University, The Netherlands) for his experimental support. This work was financially supported by a VENI grant from the Netherlands Organization for Scientific Research (NWO, grant no. 700.56.412) to LCPMdS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis C. P. M. de Smet.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martens, A.A., Bus, M., Thüne, P.C. et al. Detailed AFM Force Spectroscopy of the Interaction Between CD44–IgG Fusion Protein and Hyaluronan. BioNanoSci. 4, 232–239 (2014). https://doi.org/10.1007/s12668-014-0143-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0143-8

Keywords

Navigation