Skip to main content
Log in

Effect of Acidity on Chitin–Protein Interface: A Molecular Dynamics Study

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Chitin–protein interfaces exist in many biological materials such as cuticles of insects and crustaceans, which are main commercial sources of chitin fiber. In industrial processing, the extraction of chitin from these sources is achieved via acidic and alkaline treatments. As the acidity changes, the ionizable groups of protein undergo protonation/deprotonation, which may vary the mechanical properties of chitin–protein interface. In order to study the effect of acidity on this interface, we perform a series of molecular dynamics simulations and measure the adhesion strength between chitin and a short peptide sequence under both acidic and alkaline conditions, where the two termini are modified to accommodate the environment. The results indicate that the protonation state of terminus has a significant influence on the adhesion with chitin. Based on our simple model and its results, we analyze the roles of termini in the formation of hydrogen bonds and elucidate some atomistic mechanisms behind the acidity effect on chitin–protein interface, which may spotlight the engineering on biological materials with similar interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition 43(1): 61-87.

  2. Dunlop, J. W., & Fratzl, P. (2013). Multilevel architectures in natural materials. Scripta Materialia, 68(1), 8–12.

    Article  Google Scholar 

  3. Ravi Kumar, M. N. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27.

    Article  Google Scholar 

  4. Vincent, J. F., & Wegst, U. G. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 33(3), 187–199.

    Article  Google Scholar 

  5. Nikolov, S., Petrov, M., Lymperakis, L., Friák, M., Sachs, C., Fabritius, H.-O., et al. (2010). Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of lobster cuticle. Advanced Materials, 22(4), 519–526.

    Article  Google Scholar 

  6. Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35(2), 126–139.

    Article  Google Scholar 

  7. Xu, Z., & Buehler, M. J. (2009). Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties. Nanotechnology, 20(37), 375704.

    Article  Google Scholar 

  8. Qin, Z., & Buehler, M. J. (2010). Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals. Physical Review E, 82(6), 061906.

    Article  Google Scholar 

  9. Keten, S., & Buehler, M. J. (2008). Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Letters, 8(2), 743–748.

    Article  Google Scholar 

  10. Lau, D., Büyüköztürk, O., Buehler, M. J. (2012). Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. Journal of Materials Research, 27(14), 1787–1796.

    Article  Google Scholar 

  11. Qin, Z., & Buehler, M. (2012). Molecular mechanics of dihydroxyphenylalanine at a silica interface. Applied Physics Letters, 101(8), 083702.

    Article  Google Scholar 

  12. Jin, K., Feng, X., Xu, Z. (2013). Mechanical properties of chitin-protein interfaces: a molecular dynamics study. BioNanoScience 3(3): 312-320.

  13. Miserez, A., Rubin, D., Waite, J. H. (2010). Cross-linking chemistry of squid beak. Journal of Biological Chemistry, 285(49), 38115–38124.

    Article  Google Scholar 

  14. Gronau, G., Qin, Z., Buehler, M. J. (2013). Effect of sodium chloride on the structure and stability of spider silk’s N-terminal protein domain. Biomaterials Science, 1(3), 276–284.

    Article  Google Scholar 

  15. Waite, J. H., & Broomell, C. C. (2012). Changing environments and structure–property relationships in marine biomaterials. The Journal of Experimental Biology, 215(6), 873–883.

    Article  Google Scholar 

  16. Börjesson, U., & Hünenberger, P. H. (2001). Explicit-solvent molecular dynamics simulation at constant pH: methodology and application to small amines. The Journal of Chemical Physics, 114, 9706.

    Article  Google Scholar 

  17. Wallace, J. A., & Shen, J. K. (2011). Continuous constant pH molecular dynamics in explicit solvent with pH-based replica exchange. Journal of Chemical Theory and Computation, 7(8), 2617–2629.

    Article  Google Scholar 

  18. Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7), 603–632.

    Article  Google Scholar 

  19. Cranford, S. W., Ortiz, C., Buehler, M. J. (2010). Mechanomutable properties of a PAA/PAH polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength. Soft Matter, 6(17), 4175–4188.

    Article  Google Scholar 

  20. Petrov, M., Lymperakis, L., Friák, M., Neugebauer, J. (2013). Ab Initio based conformational study of the crystalline α-chitin. Biopolymers, 99(1), 22–34.

    Article  Google Scholar 

  21. Haynes, W. M. (2012). CRC handbook of chemistry and physics. Boca Raton, Florida: CRC press.

  22. Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19.

    Article  MATH  Google Scholar 

  23. Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145.

    Article  Google Scholar 

  24. Guvench, O., Mallajosyula, S. S., Raman, E. P., Hatcher, E., Vanommeslaeghe, K., Foster, T. J., et al. (2011). CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling. Journal of Chemical Theory and Computation, 7(10), 3162–3180.

    Article  Google Scholar 

  25. Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of <i>n</i>−alkanes. Journal of Computational Physics, 23(3), 327–341.

    Article  Google Scholar 

  26. Toukmaji, A. Y., & Board, J. A., Jr. (1996). Ewald summation techniques in perspective: a survey. Computer Physics Communications, 95(2), 73–92.

    Article  MATH  Google Scholar 

  27. Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–436.

  28. Beckham, G. T., & Crowley, M. F. (2011). Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale. The Journal of Physical Chemistry B, 115(15), 4516–4522.

    Article  Google Scholar 

  29. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926.

    Article  Google Scholar 

  30. Miller, T., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., Martyna, G. (2002). Symplectic quaternion scheme for biophysical molecular dynamics. Journal of Chemical Physics, 116(20), 8649–8659.

    Article  Google Scholar 

  31. Taylor, R. D., Jewsbury, P. J., Essex, J. W. (2002). A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design, 16(3), 151–166.

    Article  Google Scholar 

  32. Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A., Vieth, M. (2004). Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. Journal of Medicinal Chemistry, 47(1), 45–55.

    Article  Google Scholar 

  33. Büyüköztürk, O., Buehler, M. J., Lau, D., Tuakta, C. (2011). Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface. International Journal of Solids and Structures, 48(14), 2131–2140.

    Article  Google Scholar 

  34. Park, S., Khalili-Araghi, F., Tajkhorshid, E., Schulten, K. (2003). Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. The Journal of Chemical Physics, 119, 3559.

    Article  Google Scholar 

  35. Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.

    Article  Google Scholar 

  36. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I., Bustamante, C. (2002). Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296(5574), 1832–1835.

    Article  Google Scholar 

  37. Reed, A. E., Curtiss, L. A., Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899–926.

    Article  Google Scholar 

  38. Miserez, A., & Guerette, P. A. (2012). Integrating materials and life sciences toward the engineering of biomimetic materials. JOM, 64(4), 494–504.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support from Croucher Foundation through the Start-up Allowance for Croucher Scholars with the Grant No. 9500012 and the support from the Research Grants Council (RGC) in Hong Kong through the Early Career Scheme (ECS) with the Grant No. 139113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denvid Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Xu, Z. & Lau, D. Effect of Acidity on Chitin–Protein Interface: A Molecular Dynamics Study. BioNanoSci. 4, 207–215 (2014). https://doi.org/10.1007/s12668-014-0138-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0138-5

Keywords

Navigation