Skip to main content
Log in

Molecular Mechanics of Disulfide Bonded Alpha-Helical Protein Filaments

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Keratin, an alpha-helical protein, is an abundant material that forms the basis of hair and hoof, and is a composite of alpha-helical coiled coils with dense disulfide bonding between helical protein domains. Here, we report a molecular analysis of the mechanics of disulfide bonded alpha-helical protein filaments, focusing on a systematic assessment of structure–property relationships and deformation and failure mechanisms, carried out using a full atomistic explicit water model based on the CHARMM force field, extended here to capture the breaking of disulfide bonds in varied chemical microenvironments. By considering a three-strand alpha-helical model of an assembly of disulfide bonds under an external loading, we demonstrate that weak disulfide cross-link results in a highly cooperative behavior. Strong disulfide bonding resist greater external load, but the cooperative behavior is reduced. We compare the mechanical behavior of the disulfide bonded systems to a molecule with weaker H-bonds between alpha-helix domains. Under mechanical loading, H-bonds between the protein filaments are easily sacrificed and the alpha-helical structure is maintained, but the system has a lower strength. Our atomistic models provide fundamental insight into the effect of disulfide cross-link on mechanical properties of alpha-helix-based protein filament and reveals that the dependence of disulfide bond strength on the chemical microenvironment enables a tunable fiber strength by a factor of ≈2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Betz, S. F. (1993). Disulfide bonds and the stability of globular proteins. Protein Science, 2(10), 1551–1558.

    Article  Google Scholar 

  2. Hogg, P. J. (2003). Disulfide bonds as switches for protein function. Trends in Biochemical Sciences, 28(4), 210–214.

    Article  Google Scholar 

  3. Wedemeyer, W. J., et al. (2000). Disulfide bonds and protein folding†. Biochemistry, 39(15), 4207–4216.

    Article  Google Scholar 

  4. Sevier, C. S., & Kaiser, C. A. (2002). Formation and transfer of disulphide bonds in living cells. Nature Reviews Molecular Cell Biology, 3(11), 836–847.

    Article  Google Scholar 

  5. Root, B. C., et al. (2009). Design of a heterotetrameric coiled coil. Protein Science, 18(2), 329–336.

    Article  Google Scholar 

  6. Kim, P. S., & Baldwin, R. L. (1990). Intermediates in the folding reactions of small proteins. Annual Review of Biochemistry, 59, 631–660.

    Article  Google Scholar 

  7. Wagschal, K., Tripet, B., Hodges, R. S. (1999). De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils. Journal of Molecular Biology, 285(2), 785–803.

    Article  Google Scholar 

  8. Almeida, A. M., Li, R., Gellman, S. H. (2011). Parallel β-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. Journal of the American Chemical Society, 134(1), 75–78.

    Article  Google Scholar 

  9. Gong, R., et al. (2009). Engineered human antibody constant domains with increased stability. Journal of Biological Chemistry, 284(21), 14203–14210.

    Article  Google Scholar 

  10. Saerens, D., et al. (2008). Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. Journal of Molecular Biology, 377(2), 478–488.

    Article  Google Scholar 

  11. Ciaccio, N. A., & Laurence, J. S. (2009). Effects of disulfide bond formation and protein helicity on the aggregation of activating transcription factor 5. Molecular Pharmaceutics, 6(4), 1205–1215.

    Article  Google Scholar 

  12. Grützner, A., et al. (2009). Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophysical Journal, 97(3), 825–834.

    Article  Google Scholar 

  13. Wang, J., Xu, G., Borchelt, D. R. (2006). Mapping superoxide dismutase 1 domains of non-native interaction: roles of intra- and intermolecular disulfide bonding in aggregation. Journal of Neurochemistry, 96(5), 1277–1288.

    Article  Google Scholar 

  14. Pande, A., Gillot, D., Pande, J. (2009). The cataract-associated R14C mutant of human γD-crystallin shows a variety of intermolecular disulfide cross-links: a Raman spectroscopic study. Biochemistry, 48(22), 4937–4945.

    Article  Google Scholar 

  15. Buehler, M. J., & Yung, Y. C. (2009). Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 8(3), 175–188.

    Article  Google Scholar 

  16. Kim, P. S., Berger, B., Wolf, E. (1997). MultiCoil: a program for predicting two-and three-stranded coiled coils. Protein Science, 6(6), 1179–1189.

    Article  Google Scholar 

  17. Parry, D. A. D., Fraser, R. D. B., Squire, J. M. (2008). Fifty years of coiled-coils and α-helical bundles: a close relationship between sequence and structure. Journal of Structural Biology, 163(3), 258–269.

    Article  Google Scholar 

  18. Apostolovic, B., Danial, M., Klok, H. A. (2010). Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chemical Society Reviews, 39(9), 3541–3575.

    Article  Google Scholar 

  19. Pandya, M. J., et al. (2000). Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry, 39(30), 8728–8734.

    Article  Google Scholar 

  20. Papapostolou, D., et al. (2007). Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10853–10858.

    Article  Google Scholar 

  21. Mahmoud, Z. N., et al. (2010). The non-covalent decoration of self-assembling protein fibers. Biomaterials, 31(29), 7468–7474.

    Article  Google Scholar 

  22. Smith, A. M., et al. (2006). Engineering increased stability into self-assembled protein fibers. Advanced Functional Materials, 16(8), 1022–1030.

    Article  Google Scholar 

  23. Qin, Z., et al. (2012). Structural, mechanical and functional properties of intermediate filaments from the atomistic to the cellular scales. In S. Li & B. Sun (Eds.), Advances in cell mechanics (pp. 117–166). Berlin: Springer.

    Google Scholar 

  24. Goldman, R. D., et al. (2008). Intermediate filaments: versatile building blocks of cell structure. Current Opinion in Cell Biology, 20(1), 28–34.

    Article  Google Scholar 

  25. de Guzman, R. C., et al. (2011). Mechanical and biological properties of keratose biomaterials. Biomaterials, 32(32), 8205–8217.

    Article  Google Scholar 

  26. Carmofonseca, M., & Davidferreira, J. F. (1990). Interactions of intermediate filaments with cell structures. Electron Microscopy Reviews, 3(1), 115–141.

    Article  Google Scholar 

  27. Feughelman, M. (2002). Natural protein fibers. Journal of Applied Polymer Science, 83(3), 489–507.

    Google Scholar 

  28. Oxenham, W. (1989). The mechanics of wool structures R. Postle, G. A. Carnaby and S. de Jong, Ellis Horwood, Chichester, 1988. pp. 462, price £59.50. ISBN 0-7458-0322-9. British. Polymer Journal, 21(3), 279–279.

    Google Scholar 

  29. Chou, S. F., & Overfelt, R. A. (2011). Tensile deformation and failure of North American porcupine quills. Materials Science & Engineering C-Materials for Biological Applications, 31(8), 1729–1736.

    Article  Google Scholar 

  30. Seshadri, I. P., & Bhushan, B. (2008). In situ tensile deformation characterization of human hair with atomic force microscopy. Acta Materialia, 56(4), 774–781.

    Article  Google Scholar 

  31. Fudge, D. S., & Gosline, J. M. (2004). Molecular design of the α-keratin composite: insights from a matrix-free model, hagfish slime threads. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1536), 291–299.

    Article  Google Scholar 

  32. Guthold, M., et al. (2007). A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochemistry and Biophysics, 49(3), 165–181.

    Article  Google Scholar 

  33. Bertram, J. E., & Gosline, J. M. (1987). Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects. Journal of Experimental Biology, 130(1), 121–136.

    Google Scholar 

  34. Guzman, C., et al. (2006). Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. Journal of Molecular Biology, 360(3), 623–630.

    Article  Google Scholar 

  35. Smith, T. A., & Parry, D. A. D. (2008). Three-dimensional modelling of interchain sequence similarities and differences in the coiled-coil segments of keratin intermediate filament heterodimers highlight features important in assembly. Journal of Structural Biology, 162(1), 139–151.

    Article  Google Scholar 

  36. Akkermans, R. L. C., & Warren, P. B. (2004). Multiscale modelling of human hair. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 362(1821), 1783–1793.

    Article  MATH  Google Scholar 

  37. Knopp, B., Jung, B., Wortmann, F. J. (1997). Modeling of the transition temperature for the helical denaturation of alpha-keratin intermediate filaments. Macromolecular Theory and Simulations, 6(1), 1–12.

    Article  Google Scholar 

  38. Danciulescu, C., Nick, B., Wortmann, F.-J. (2004). Structural stability of wild type and mutated α-keratin fragments: molecular dynamics and free energy calculations. Biomacromolecules, 5(6), 2165–2175.

    Article  Google Scholar 

  39. Qin, Z., Kreplak, L., Buehler, M. J. (2009). Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE, 4(10), e7294.

    Article  Google Scholar 

  40. Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 6.

    Article  Google Scholar 

  41. Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19.

    Article  MATH  Google Scholar 

  42. MacKerell, A. D., et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616.

    Article  Google Scholar 

  43. Wiita, A. P., et al. (2006). Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proceedings of the National Academy of Sciences of the United States of America, 103(19), 7222–7227.

    Article  Google Scholar 

  44. Qin, Z., Kreplak L., Buehler, M.J. (2009) Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10): e7294.

    Google Scholar 

  45. Ackbarow, T., Keten, S., Buehler, M. J. (2009). A multi-timescale strength model of alpha-helical protein domains. Journal of Physics-Condensed Matter, 21, 035111.

    Google Scholar 

  46. Ackbarow, T., et al. (2007). Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains. Proceedings of the National Academy of Sciences, 104(42), 16410–16415.

    Article  Google Scholar 

  47. Yoon, G., Na, S., Eom, K. (2012) Loading device effect on protein unfolding mechanics. Journal of Chemical Physics 137(2).

  48. Maitra, A., & Arya, G. (2011). Influence of pulling handles and device stiffness in single-molecule force spectroscopy. Physical Chemistry Chemical Physics, 13(5), 1836–1842.

    Article  Google Scholar 

  49. Chou, C.-C., & Buehler, M. J. (2011). Bond energy effects on strength, cooperativity and robustness of molecular structures. Interface Focus, 1(5), 734–743.

    Article  Google Scholar 

  50. Buehler, M. J. (2007) Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18, 295102.

    Google Scholar 

  51. Buehler, M. J., & Ackbarow, T. (2008). Nanomechanical strength mechanisms of hierarchical biological materials and tissues. Computer Methods in Biomechanics and Biomedical Engineering, 11(6), 595–607.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by AFOSR and ARO-MURI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, CC., Buehler, M.J. Molecular Mechanics of Disulfide Bonded Alpha-Helical Protein Filaments. BioNanoSci. 3, 85–94 (2013). https://doi.org/10.1007/s12668-012-0065-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0065-2

Keywords

Navigation