Skip to main content
Log in

Extracellular Biosynthesis of Silver Nanoparticles Using Fungi Penicillium diversum and Their Antimicrobial Activity Studies

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this present investigation, we report a simple, cost-effective, and eco-friendly method of synthesizing colloidal silver nanoparticles by using fungi Penicillium diversum. UV–visible spectroscopy studies were carried out to quantify the formation of silver nanoparticles. The X-ray diffraction pattern suggests the crystallinity of silver nanoparticles. Atomic force microscopy and transmission electron microscopy images show that the silver nanoparticles are polydispersed and are in a size range of 5 to 45 nm with an average size of 20 nm. From the Fourier transform infrared spectroscopy, we presume that the reductase enzyme present in the fungal extract may be responsible for the reduction and stabilization of the silver nanoparticles. The resultant silver nanoparticles showed effective antimicrobial activity against Escherichia coli, Salmonella typhi, Vibrio cholerae, and the clinical isolate of Paratyphia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gajbhiye, M., Kesharwani, J., et al. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 5, 382–386.

    Article  Google Scholar 

  2. Ahmad, A., Mukherjee, P., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces. B, Biointerfaces, 28, 313–318.

    Article  Google Scholar 

  3. Bigall, N. C., & Eychmüller, A. (2010). Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philosophical Transactions of the Royal Society, 368(1915), 1385–1404.

    Article  Google Scholar 

  4. Feymen, R. (1991). There's plenty of room at the bottom. Science, 254, 1300–1301.

    Article  Google Scholar 

  5. Verma, A., & Stellacci, F. (2010). Effect of surface properties on nanoparticle–cell interactions. Small, 6, 12–21.

    Article  Google Scholar 

  6. Sau, T. K., Rogach, A. L., et al. (2010). Properties and applications of colloidal nonspherical noble metal nanoparticles. Advanced Materials, 22, 1805–1825.

    Article  Google Scholar 

  7. Camelio, S., Babonneau, D., et al. (2009). Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion. Physical Review B, 80, 155434.

    Article  Google Scholar 

  8. Lansdown, A. B. G. (2010). A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Advances in Pharmacological Sciences, Article ID, 910686. doi:10.1155/2010/910686.

  9. Dankovich, T. A., & Gray, D. G. (2011). Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environmental Science and Technology, 45, 1992–1998.

    Article  Google Scholar 

  10. Ahmed, A., Senapati, S., et al. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermonospora sp. Langmuir, 19, 3550–3553.

    Article  Google Scholar 

  11. Mandal, D., Bolander, M. E., et al. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69(5), 485–492.

    Article  Google Scholar 

  12. Bhanska, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids and Surfaces. B, Biointerfaces, 47, 160–164.

    Article  Google Scholar 

  13. Mukherjee, P., Ahmed, A., et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1(10), 515–519.

    Article  Google Scholar 

  14. Bsavaraja, S., Balaji, S. D., et al. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164–1170.

    Article  Google Scholar 

  15. Balaji, D. S., Basavaraja, S., et al. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces. B, Biointerfaces, 68, 88–92.

    Article  Google Scholar 

  16. Philip, D. (2009). Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73, 374–381.

    Article  Google Scholar 

  17. Bhat, R., Deshpande, R., et al. (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorganic chemistry and Applications., Article ID 650979.

  18. Shankar, S. S., Rai, A., et al. (2004). Rapid synthesis of Au, Ag and bimetallic Au core Ag shell nanoparticles using neem (Azaridachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502.

    Article  Google Scholar 

  19. Gardea-Torresdey, J. L., Gomez, E., et al. (2004). Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19(4), 1357–1361.

    Article  Google Scholar 

  20. Raghunandan, D., Mahesh, B. D., et al. (2011). Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J Nanopart Res., 13(5), 2021–2028.

    Article  Google Scholar 

  21. Raghunandan, D., Basavaraja, S., et al. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces. B, Biointerfaces, 79, 235–240.

    Article  Google Scholar 

  22. Jaya, J., Smith, A., et al. (2009). Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Molecular Pharmaceutics, 6, 1388–1401.

    Article  Google Scholar 

  23. Vigneshwaran, N., Arati, A., et al. (2006). Biomimetics of silver nanoparticles by white rot fungus. Phaenerochaete Chrysosporium Colloids and Surfaces B: Biointerfaces, 53, 55–59.

    Article  Google Scholar 

  24. Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry. Chichester: Wiley.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC, Major Research Project (F. No. 33-307/2007 (SR), DAE-BRNS Project (No.2009/34/14/BRNS), and VGST (SMYSR-D38/7), Bangalore, for financial assistance. We also acknowledge help from SAIF, IIT Mumbai for TEM measurements, and Biogenics, Hubli, for antimicrobial studies. We thank Shri. Jagannathrao M. Deshpande, father of author Raghunandan Deshpande, for editing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkataraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganachari, S.V., Bhat, R., Deshpande, R. et al. Extracellular Biosynthesis of Silver Nanoparticles Using Fungi Penicillium diversum and Their Antimicrobial Activity Studies. BioNanoSci. 2, 316–321 (2012). https://doi.org/10.1007/s12668-012-0046-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0046-5

Keywords

Navigation