Skip to main content

Advertisement

Log in

Green Synthesis of Silver Nanoparticles with Zingiber officinale Extract and Study of its Blood Compatibility

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Biosynthesis of silver nanoparticles with small size and high stability is particularly beneficial in various biomedical applications. Synthesis of silver nanoparticles by the addition of different reducing agents and stabilizing agents has been reported by several researchers. Stability under physiological conditions and blood compatibility are serious issues when silver colloids are used as therapeutic agents in clinical medicine from the safety point of view, particularly, when silver nanoparticles are reported to be translocated in to the systemic circulation. In the present study, we have synthesized silver nanoparticles, with a particle size ranging from 6 to 20 nm, by a green synthesis method using Zingiber officinale extract which acts as reducing as well as a stabilizing agent. The size distribution and formation of silver nanoparticles were confirmed by dynamic light scattering, UV-visible spectrophotometer, transmission electron microscope, and atomic force microscopy. These nanoparticles were also extremely stable at physiological condition and were blood compatible. Z. officinale is reported to be a more potent antiplatelet agent than aspirin. Its use as vectors for applications in drug delivery, gene delivery or as biosensors, where a direct contact with blood occurs is justified by the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma, V. K., Yngard, R. A., Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96.

    Article  Google Scholar 

  2. Thakkar, K. N., Mhatre, S. S., Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine and Nanotechnology Biology and Medicine, 6(2), 257–262.

    Article  Google Scholar 

  3. Goodsell, D. S. (2004). Bionanotechnology: lessons from nature. Hoboken: Wiley.

    Google Scholar 

  4. Hutter, E., & Fendler, J. H. (2004). Exploitation of localized surface plasmon resonance. Advanced Materials, 16, 1685–1706.

    Article  Google Scholar 

  5. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V. K., Nevecna, T., Zboril, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry. B, 110(33), 16248–16253.

    Article  Google Scholar 

  6. Kholoud, M. M., El-Nour, A., Eftaiha, A., Al-Warthan, A., Reda, A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3(3), 135–140.

    Article  Google Scholar 

  7. Caro, C., Castillo, P. M., Klippstein, R., Pozo, D., Zaderenko, A. P. (2010). Silver nanoparticles: Sensing and imaging applications. In D. P. Perez (Ed.), Silver nanoparticles. ISBN: 978-953-307-028-5, InTech, http://www.intechopen.com/books/silver-nanoparticles/silver-nanoparticles-sensing-and-imaging-applications.

  8. Wu, Q., Cao, H., Luan, Q., Zhang, J., Wang, Z., Warner, J. H., Watt, A. A. R. (2008). Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorganic Chemistry, 47(13), 5882–5888.

    Article  Google Scholar 

  9. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353.

    Article  Google Scholar 

  10. Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., Tam, P. K., Chiu, J. F., Che, C. M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. Journal of Biological Inorganic Chemistry, 12(4), 527–534.

    Article  Google Scholar 

  11. Ip, M., Lui, S. L., Poon, V. K., Lung, I., Burd, A. (2006). Antimicrobial activities of silver dressings: an in vitro comparison. Journal of Medical Microbiology, 55(Pt 1), 59–63.

    Article  Google Scholar 

  12. Silver, S. (2003). Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews, 27(2–3), 341–353.

    Article  Google Scholar 

  13. Arvizo, R. R., Bhattacharyya, S., Kudgus, R. A., Giri, K., Bhattacharya, R., Mukherjee, P. (2012). Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 41, 2943–2970.

    Article  Google Scholar 

  14. Prasad, T. N. V. K. V., Kambala, V. S. R., Naidu, R. (2011). A critical review on biogenic silver nanoparticles and their antimicrobial activity. Current Nanoscience, 7, 531–544.

    Article  Google Scholar 

  15. Vijayaraghavan, K., & Nalini, S. P. K. (2010). Biotemplates in the green synthesis of silver nanoparticles. Biotechnology Journal, 5, 1098–1110.

    Article  Google Scholar 

  16. Thakkar, K. N., Mhatre, S. S., Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257–262.

    Article  Google Scholar 

  17. Florence, A. T. (2005). Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discovery Today: Technologies, 2, 75–81.

    Article  Google Scholar 

  18. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., Xi, T. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. Journal of Nanoscience and Nanotechnology, 9(8), 4924–4932.

    Article  Google Scholar 

  19. Nurtjahja-Tjendraputra, E., Ammit, A. J., Roufogalis, B. D., Tran, V. H., Duke, C. C. (2003). Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thrombosis Research, 111(4–5), 259–265.

    Article  Google Scholar 

  20. Black, C. D., Herring, M. P., Hurley, D. J., O'Connor, P. J. (2010). Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. The Journal of Pain, 11(9), 894–903.

    Article  Google Scholar 

  21. Sileikaite, A., Prosycevas, I., Puiso, J., Juraitis, A., Guobiene, A. (2006). Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Materials Science (Medziagotyra), 12(4), 287–291.

    Google Scholar 

  22. Lee, P. C., & Melsel, D. (1982). Asorption and surface-enhanced Raman of dyes on silver and gold sols. Journal of Physical Chemistry, 66, 3391–3395.

    Article  Google Scholar 

  23. ISO Standard (2008). Particle size analysis—dynamic light scattering (DLS), International Organization for Standards, ISO 22412:2008E 2008.

  24. Standard Recommended Practice for the Assessment of the Hemolytic Properties of Materials. (1978). Artificial Organs, 2(3), 318–320.

    Article  Google Scholar 

  25. Comell, D. W., & McLachlan, R. (1972). Natural pungent compounds: IV. Examination of the gingerols, shogaols, paradols and related compounds by thin-layer and gas chromatography. Journal of Chromatography, 67(1), 29–35.

    Article  Google Scholar 

  26. Yang, W. S., Dong, X. Y., Ji, X. H., Wu, H. L., Zhao, L. L., Li, J. (2009). Shape control of silver nanoparticles by stepwise citrate reduction. Journal of Physical Chemistry C, 113(16), 6573–6576.

    Article  Google Scholar 

  27. Goia, D. V. (2004). Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. Journal of Materials Chemistry, 14, 451–458.

    Article  Google Scholar 

  28. Tejamaya, M., Römer, I., Merrifield, R. C., Lead, J. R. (2012). Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environmental Science and Technology. doi:10.1021/es2038596.

  29. Tolaymat, T. M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. The Science of the Total Environment, 408, 999–1006.

    Article  Google Scholar 

  30. Römer, I., White, T. A., Baaloushan, M., Chipman, K., Viant, M. R., Lead, J. R. (2011). Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A, 1218, 4226–4233.

    Article  Google Scholar 

  31. Xia, Y., & Halas, N. J. (2005). Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 30, 338–343.

    Article  Google Scholar 

  32. Kerker, M. (1969). Light and other electromagnetic radiation. New York: Academic.

    Google Scholar 

  33. Bohren, C. D., & Huffman, D. R. (1983). Absorption and scattering of light by small particles. New York: Wiley.

    Google Scholar 

  34. Creighton, J. A., & Eadon, D. G. (1991). Ultraviolet visible absorption-spectra of the colloidal metallic elements. Journal of the Chemical Society, Faraday Transactions, 87(24), 3881–3891.

    Article  Google Scholar 

  35. MacCuspie, R. I. (2011). Colloidal stability of silver nanoparticles in biologically relevant conditions. Journal of Nanoparticle Research, 13(7), 2893–2908.

    Article  Google Scholar 

  36. Jani, P., Halbert, G. W., Langridge, J., Florence, A. T. (1989). The uptake and translocation of latex nanospheres and microspheres after oral-administration to rats. The Journal of Pharmacy and Pharmacology, 41(12), 809–812.

    Article  Google Scholar 

  37. Shakweh, M., Ponchel, G., Fattal, E. (2004). Particle uptake by Peyer's patches: a pathway for drug and vaccine delivery. Expert Opinion on Drug Delivery, 1(1), 141–163.

    Article  Google Scholar 

  38. Nemmar, A., Hoylaerts, M. F., Hoet, P. H., Nemery, B. (2004). Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicology Letters, 149(1–3), 243–253.

    Article  Google Scholar 

  39. Mollnes, T. E., Riesenfeld, J., Garred, P., Nordstrom, E., Hogasen, K., Fosse, E., Gotze, O., Harboe, M. (1995). A new model for evaluation of biocompatibility: combined determination of neoepitopes in blood and on artificial surfaces demonstrates reduced complement activation by immobilization of heparin. Artificial Organs, 19(9), 909–917.

    Article  Google Scholar 

  40. Kaplan, K. L., & Owen, J. (1981). Plasma levels of beta-thromboglobulin and platelet factor 4 as indices of platelet activation in vivo. Blood, 57(2), 199–202.

    Google Scholar 

  41. Chandy, T., & Sharma, C. P. (1996). Effect of liposome-albumin coatings on ferric ion retention and release from chitosan beads. Biomaterials, 17, 61–66.

    Article  Google Scholar 

  42. Sharma, C. P. (2001). Blood-compatible materials: a perspective. Journal of Biomaterials Applications, 15(4), 359–381.

    Article  Google Scholar 

  43. Xi, T. F., Tang, J. L., Xiong, L., Zhou, G. F., Wang, S., Wang, J. Y., Liu, L., Li, J. G., Yuan, F. Q., Lu, S. F., Wan, Z. Y., Chou, L. S. (2010). Silver nanoparticles crossing through and distribution in the blood–brain barrier in vitro. Journal of Nanoscience and Nanotechnology, 10(10), 6313–6317.

    Article  Google Scholar 

  44. Tanabe, M., Chen, Y. D., Saito, K., Kano, Y. (1993). Cholesterol-biosynthesis inhibitory component from zingiber-officinale roscoe. Chemical and Pharmaceutical Bulletin, 41(4), 710–713.

    Article  Google Scholar 

  45. Afzal, M., Al-Hadidi, D., Menon, M., Pesek, J., Dhami, M. S. (2001). Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabolism and Drug Interactions, 18(3–4), 159–190.

    Article  Google Scholar 

  46. Akhani, S. P., Vishwakarma, S. L., Goyal, R. K. (2004). Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. The Journal of Pharmacy and Pharmacology, 56(1), 101–105.

    Article  Google Scholar 

  47. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Director and the Head BMT Wing of SCTIMST for providing facilities for the completion of this work. This work was supported by the Department of Science & Technology, Govt. of India through the project “Facility for nano/microparticle based biomaterials—advanced drug delivery systems” #8013, under the Drugs & Pharmaceuticals Research Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra P. Sharma.

Additional information

The authors K. Praveen Kumar and Willi Paul contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, K.P., Paul, W. & Sharma, C.P. Green Synthesis of Silver Nanoparticles with Zingiber officinale Extract and Study of its Blood Compatibility. BioNanoSci. 2, 144–152 (2012). https://doi.org/10.1007/s12668-012-0044-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0044-7

Keywords

Navigation