Skip to main content

Advertisement

Log in

Robust model-based fault diagnosis of mechanical drive train in V47/660 kW wind turbine

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this study, a robust fault diagnosis scheme for V47/660 kW wind turbine is proposed. A comprehensive mathematical model for mechanical drive train and gearbox dynamic of V47/660 kW wind turbine operating in Manjil wind farm, Gilan province, Iran, is developed based on which the model-based Fault Detection and Isolation (FDI) scheme is designed. The proposed FDI scheme detects various critical and common sensor faults, actuator faults and components faults. A mixed Unknown Input-Proportional Integral Observer (UI-PIO) method and the parameter estimation method are used for fault detection and isolation. The robustness of the residuals to disturbances is also addressed. Simulation results using experimental data are presented to demonstrate the effectiveness of the proposed fault diagnosis system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Tooth surface

C :

Damping

\(C_{p}\) :

Power coefficient

d(t):

Unknown input

\(D_{n}\) :

Viscous damping for nth contacting tooth pair

\(d_{s}\) :

Measurement noise

\(E_{d}\) :

Unknown input distribution matrix

\(E_{s}\) :

Sensor noise distribution matrix

\(e_{y}\) :

Output estimation error

\({F_{a}}\) :

Actuator fault distribution matrix

\({F_{t}}\) :

Thrust force that wind apply to the rotor disk

h :

Film thickness

J :

Inertia

K :

Stiffness

\(L_{1}\) :

Stator inductance

\(L_{2}\) :

Rotor inductance

\(L_{m}\) :

Mutual inductance

m :

Equivalent mass

\(m_{g}\) :

Module of gear

n :

Gearbox ratio

P :

Wind Power

p :

Number of pole pairs

\(P_{r}\) :

Mechanical energy of rotor

\(p_{nom}\) :

Nominal value of parameters

\(\hat{{p}}_k \) :

Estimated value of parameters

R :

Rotor radius

\(R_{1}\) :

Stator resistance

\(R_{2}\) :

Rotor resistance

\(T_{g}\) :

Generator torque

\(T_{g,r}\) :

Reference torque

\(T_{hs}\) :

High speed shaft torque

\(T_{ls}\) :

Low speed shaft torque

\(T_{rd}\) :

Stiffness cycle time

\(T_{rot}\) :

Rotor torque

\(V_{e}\) :

Root mean square value of supply voltage

v :

Wind speed

\(v_{m}\) :

Constant part of wind speed

\(v_{t}\) :

Turbulent part of wind speed

\(w_{a}\) :

Supply frequency

\(w_{g}\) :

Generator speed

\(w_{i}\) :

Rotor frequency of generator

\(w_{rot}\) :

Rotor speed

\(\alpha \) :

Pressure angle

\(\beta \) :

Pitch angle

\(\beta ^{\prime }\) :

Probability of increase in residual from random value

\(\delta \) :

Shaft’s twist

\(\varepsilon \) :

Contact ratio

\(\eta \) :

Lubricant viscosity

\(\theta \) :

Torsional displacement

\(\lambda \) :

Tip speed ratio

\(\rho \) :

Air density

\(\psi \) :

Tooth bending deflection

\(\varsigma \) :

Momentum parameter

\(\tau _{T}\) :

Generator time constant

\(\phi \) :

Regressor vector

\(\omega \) :

Angular velocity

References

  1. Crabtree, Ch. J.: Condition monitoring techniques for wind turbine. Doctoral dissertation, Durham University (2011)

  2. Asgari, Sh., Yazdizadeh, A., Kazemi, M.G., Kamarzarin M.: Model-based Fault detection and isolation for V47/660kW wind turbine. In: 2015 23rd Iranian Conference on Eengineering (pp. 1574–1579). IEEE (2015)

  3. Ghaffarzadeh, N., Baniamer, M.: Inter-turn stator fault detection in DFIG based wind turbine using generator current amplitude demodulation by discrete cosine transform. Int. J. Basic Sci. Appl. Res. 3(2), 70–78 (2014)

  4. Garg, H., Dahiya, R.: Current signature analysis and its application in the condition monitoring of wind turbine for rotor faults. Energy Syst. (2016). doi:10.1007/s12667-016-0208-6

  5. Gong, X., Qiao, W.: Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals. IEEE Trans. Ind. Electron. 60, 3419–3428 (2013)

    Article  Google Scholar 

  6. Yin, S., Wang, G., Karimi, H.R.: Data-driven design of robust fault detection system for wind turbines. Mechatronics 24, 298–306 (2014)

    Article  Google Scholar 

  7. Zhi-Ling, Y., Bin, W., Xing-Hui, D., Hao, L.I.U.: Expert system of fault diagnosis for gear box in wind turbine. Syst. Eng. Proc. 4, 189–195 (2012)

    Article  Google Scholar 

  8. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  9. Dolan, B.: Wind turbine modeling, control and fault detection. M.Sc. thesis, Technical University of Denmark (2010)

  10. Blesa, J., Jimenez, P., Rotondo, D., Nejjari, F., Puig, V.: An interval NLPV parity equations approach for fault detection and isolation of a wind farm. IEEE Trans. Ind. Electron. 62, 3794–3805 (2014)

    Google Scholar 

  11. Casau, P., Rosa, P., Tabatabaeipour, S.M., Silvestre, C., Stoustrup, J.: A set-valued approach to FDI and FTC of wind turbines. IEEE Trans. Control Syst. Technol. 23(1), 245–263 (2015)

    Article  Google Scholar 

  12. Sanchez, H., Escobet, T., Puig, V., Odgaard, P.F.: Fault diagnosis of an advanced wind turbine benchmark using interval-based ARRs and observers. IEEE Trans. Ind. Electron. 62(6), 3783–3793 (2015)

    Google Scholar 

  13. Kumar, R. S., Manimozhi, M., Enosh, M. T.: A survey of fault detection and isolation in wind turbine drives. In: International Conference on Power, Energy and Control (ICPEC), pp. 648–652 (2013)

  14. Trinh, D.H., Chafouk, H.: Fault detection and isolation using Kalman filter bank for a wind turbine generator. In: 19th Mediterranean Conference on Control and Automation (MED), pp. 144–149 (2011)

  15. Sheibat-Othman, N., Othman, S., Benlahrache, M., Odgaard, P.F.: Fault detection and isolation in wind turbines using support vector machines and observers. In: American Control Conference (ACC), pp. 4459–4464 (2013)

  16. Odgaard, P.F., Stoustrup, J., Kinnaert, M.: Fault-tolerant control of wind turbines: a benchmark model. IEEE Trans. Control Syst. Technol. 21(4), 1168–1182 (2013)

    Article  Google Scholar 

  17. Hwas, A., Katebi, R.: Model-based fault detection and isolation for wind turbine. In: Control (CONTROL), 2012 UKACC International Conference on, pp. 876–881. IEEE (2012)

  18. Blesa, J., Nejjari, F., Rotondo, D., Puig, V.: Robust fault detection and isolation of wind turbines using interval observers. In: Conference on Control and Fault-Tolerant Systems (SysTol), pp. 353–358 (2013)

  19. Casau, P., Rosa, P., Silvestre, C.: Wind turbines fault detection and identification using set-valued observers. In: American Control Conference (ACC), pp. 4399–4404 (2012)

  20. Zhang, J., Bennouna, O., Swain, A.K., Nguang, S.K.: Detection and isolation of sensor faults of wind turbines using sliding mode observers. In: International Renewable and Sustainable Energy Conference (IRSEC), pp. 234–239 (2013)

  21. Odgaard, P., Stoustrup, J.: Unknown input observer based detection of sensor faults in a wind turbine. in: IEEE International Conference on Control Applications, pp. 310–315 (2010)

  22. Odgaard, P.F., Stoustrup, J.: Fault tolerant control of wind turbines using unknown input observers. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 313–318 (2012)

  23. Muhando, E., Senjyu, T., Kinjo, H., Funabashi, T.: Extending the modeling framework for wind generation systems: RLS-based paradigm for performance under high turbulence inflow. IEEE Trans. Energy Convers. 24(1), 211–221 (2009)

    Article  Google Scholar 

  24. Kassem, A.M.: Modeling and control design of a stand-alone wind energy conversion system based on functional model predictive control. Energy Syst. 3(3), 303–323 (2012)

    Article  Google Scholar 

  25. Burkart, R., Margellos, M., Lygeros, J.: Nonlinear control of wind turbine: an approach based on switched linear systems and fLinearization. In: 50th IEEE Conference on Decision and Control, pp. 5485–5490 (2011)

  26. Hammerum, K.: A fatigue approach to wind turbine control. M.Sc. thesis, Technical University of Denmark (2009)

  27. Alonge, F., Cangemi, T., Magazzu, A., Maniscalchi, M.: A model-Based control strategy for wind turbines with asynchronous generator. In: International Conference on Clean Electrical Power, pp. 506–513 (2007)

  28. Medina, A., Cisneros, R.: Power quality assessment with a state space model of a wind park in dq0 coordinates. In: IEEE Electrical Power and Energy Conference, pp. 1–6 (2009)

  29. Ugalde-Loo, C., Ekanayake, J., Jenkins, N.: State-space modeling of wind turbine generators for power system studies. IEEE Trans. Ind. Appl. 49, 223–232 (2013)

    Article  Google Scholar 

  30. Ahmed, W.K.: Mechanical modeling of wind turbine comparative study. Int. J. Renew. Energy Res. (IJRER) 3(1), 94–97 (2013)

    Google Scholar 

  31. Saravanakumar, R., Jena, D.: Nonlinear control of wind turbine with optimal power capture and load mitigation. Energy Syst. 7(3), 429–448 (2016)

  32. Ghoudelbourk, S., Dib, D., Omeiri.: A. Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst. 7(3), 483–497 (2016)

  33. Girsang, I.P., Dhupia, J.S., Muljadi, E., Singh, M., Pao, L.Y.: Gearbox and drivetrain models to study dynamic effects of modern wind turbines. IEEE Trans. Ind. Appl. 50(6), 3777–3786 (2014)

    Article  Google Scholar 

  34. Farahani, E.M., Hosseinzadeh, N., Ektesabi, M.: Comparison of fault-ride-through of dual and single-rotor wind turbines. Renew. Energy 48, 473–481 (2012)

    Article  Google Scholar 

  35. Chaari, F., Zimroz, R., Bartelmus, W., Fakhfakh, T., Haddar, M.: Model based investigation on a two stages gearbox dynamics under non-stationary Operation. In: Condition Monitoring of Machinery in Non-Stationary Operations, pp. 133–142 (2012)

  36. Shawki, A., Eid, S.M.: Wind turbine planetary gearbox health diagnostic using varying-time meshing stiffness variation. Int. J. Modern Eng. Res. 12, 1–12 (2014)

    Google Scholar 

  37. Amezketa, M., Iriarte, X., Ros, J., Pinter, J.: Dynamic model of a helical gear pair With backlash and angle varying mesh stiffness. In: Multibody Dynamics ECCOMAS Thematic Conference. Warsaw, Poland (2009)

  38. Atanasiu, V., Doroftei, I.: Dynamic contact loads of spur gear pairs with addendum modifications. Eur. J. Mech. Environ. Eng. 2, 21–26 (2008)

    Google Scholar 

  39. Li, S., Kahraman, A.: A spur gear mesh interface damping model based on elastohydrodynamic contact behavior. Int. J. Powertrains 1, 4–21 (2011)

    Article  Google Scholar 

  40. Hortel, M., Skuderova, A.: Bifurcation characteristics in parametric systems with combined damping. Eng. Mech. 16, 221–229 (2009)

    Google Scholar 

  41. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer Science & Business Media, New York (2012)

  42. Sun, X.: Unknown input observer approaches to robust fault diagnosis. Doctoral dissertation, University of HULL, New York (2013)

  43. Simani, S.: Model-based fault diagnosis in dynamic systems using identification techniques”, Doctoral dissertation, University of Ferrara (1999)

  44. Iserman, R.: Fault Diagnosis Systems, An introduction from fault detection to fault tolerance. Springer Science & Business Media, Germany (2006)

  45. Patan, K.: Artificial neural networks for the modelling and fault diagnosis of technical processes. Springer, India (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Asgari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, S., Yazdizadeh, A. Robust model-based fault diagnosis of mechanical drive train in V47/660 kW wind turbine. Energy Syst 9, 921–952 (2018). https://doi.org/10.1007/s12667-017-0231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-017-0231-2

Keywords

Navigation