Skip to main content
Log in

Stochastic models and control for electrical power line temperature

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this paper we present a rigorous analysis of the evolution of the temperature of a power line under stochastic exogenous factors such as ambient temperature. We present a solution to the resulting stochastic heat equation and we propose a number of control algorithms designed to maximize delivered power under chance constraints used to limit the probability that a line exceeds its critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anghel, M., Werley, K.A., Motter, A.E.: Stochastic model for power grid dynamics. In: Proceedings of the 40th Hawaii Int. Conf. on System Sciences (2007)

  2. Andersson, G.: Modelling and Analysis of Electric Power Systems. Power Systems Laboratory, ETH Zürich (2004)

    Google Scholar 

  3. Bergen, A.R., Vittal, V.: Power Systems Analysis. Prentice-Hall, New Jersey (1999)

    Google Scholar 

  4. Bienstock, D., McClosky, B.: Tightening simple mixed-integer sets with guaranteed bounds. Math. Program. 133, 337–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, Springer Series in Operations Research and Financial Engineering (2001)

  6. Blanchet, J. Bienstock, D., Li, J.: Power Line Control under Uncertainty of Ambient Temperature, CDC ’13 (2013)

  7. Charnes, A., Cooper, W., Symonds, G.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4, 235–263 (1958)

    Article  Google Scholar 

  8. Chen, X., Sim, M., Sun, P., Zhang, J.: A linear decision-based approximation approach to stochastic programming. Oper. Res. 56, 344–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dentcheva, D.: Optimization models with probabilistic constraints, Ch. 4. Lectures on Stochastic Optimization. In: Shapiro, A., Dentcheva, D., Ruszczynski, A. (eds.) MPS-SIAM Seres in Optimization. SIAM, Philadelphia, p. 9 (2009)

  10. On two-stage convex chance constrained problems: Math. Methods Oper. Res. 65, 115–140 (2007)

  11. IEEE Std. 738–2006. IEEE standard for calculating the current-temperature of bare overhead conductors, pp. 1–59 (2006)

  12. Glover, J.D., Sarma, M.S., Overbye, T.J.: Power System Analysis and Design. CENGAGE Learning (2012)

  13. Henrion, R.: Introduction to chance constraint programming. Tutorial paper for the Stochastic Programming Community Home Page (2004)

  14. Henrion, R.: A critical note on empirical (sample average, Monte Carlo) approximation of solutions to chance constrained programs. In: Hömberg, D., Tröltzsch, F. (eds.) CSMO 2011, IFIP AICT 391, pp. 25–37. Springer, Berlin (2013)

  15. Huneault, M., Galiana, F.D.: A survey of the optimal power flow literature. IEEE Trans. Power Syst. 6, 762–770 (1991)

    Article  Google Scholar 

  16. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146, 219–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, L., Wagner, H.: Chance-constrained programming with joint constraints. Oper. Res. 13, 930–945 (1965)

    Article  MATH  Google Scholar 

  18. Nemirovsky, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oliveira, W., Sagastizbal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic programming. SIAM. J Optim. 21, 511–544 (2011)

    Article  MathSciNet  Google Scholar 

  20. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  21. Swanson, J.: Variations of the solution to a stochastic heat equation. Ann. Probab. 35, 2122–2150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tudor, C.A.: Analysis of Variations for Self-similar Processes, Series on Probability and Its Applications. Springer, Berlin (2013)

    Book  Google Scholar 

  23. U.S.-Canada Power System Outage Task Force. Report on the August 14, 2003 blackout in the united states and canada: Causes and recommendations. https://reports.energy.gov (2004)

  24. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Zimmerman, R.D., Murillo-Sanchez, C.E.: MATPOWER 4.1 User’s Manual. Power Systems Engineering Research Center (PSERC) (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bienstock.

Additional information

This work was partially supported by DTRA grant HDTRA1-13-1-0021 and LANL award ‘Grid Science’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bienstock, D., Blanchet, J. & Li, J. Stochastic models and control for electrical power line temperature. Energy Syst 7, 173–192 (2016). https://doi.org/10.1007/s12667-015-0160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-015-0160-x

Keywords

Navigation