Skip to main content
Log in

Optimal placement of phasor measurement units to attain power system observability utilizing an upgraded binary harmony search algorithm

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Phasor measurement units (PMUs), which provide time-synchronized measurements of current and voltage phasors, are considered as an advanced tool for monitoring, protection and management of modern power systems. In this paper, a novel method for optimal placement of PMUs for complete observability of power network is presented. However the installation cost of the PMUs in different places differ with each other, which is related to some factors like as the number of branches connectedto the placed bus, a big quantity of reported methods for optimal PMU placement problem considered an equal cost for PMU installation in different places. An upgraded binary harmony search algorithm is utilized in this paper as an optimization method to attain the minimum number of PMUs and their relevant locations considering the installation costs of the PMUs. The proposed method is applied to IEEE 14-bus, IEEE 30-bus, IEEE 39-bus and IEEE 118-bus standard test systems to obtain the optimal PMU placement. The simulation results confirm that the proposed method is efficient in optimal PMUs placement with minimum cost of configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

PMU:

Phasor measurement unit

OPP:

Optimal PMU placement

UBHS:

Upgraded binary harmony search

SCADA:

Supervisory control and data acquisition

RTU:

Remote terminal unit

WAMPAC:

Wide area monitoring, protection, and control

SMT:

Synchronized measurement technology

GPS:

Global positioning system

SLP:

Sequential linear programming

SQP:

Sequential quadratic programming

IMPs:

Interior point methods

ACO:

Ant colony optimization

ANN:

Artificial neural networks

BFA:

Bacterial foraging algorithms

COA:

Chaos optimization algorithms

EAs:

Evolutionary algorithms

DE:

Differential evolution

ILP:

Integer linear programming

NSDE:

Non-dominated sorting differential evolution

SA:

Simulated annealing

RTS:

Recursive Tabu search

TS:

Tabu search

IGA:

Immunity genetic algorithm

GA:

Genetic algorithm

OMPP:

Optimal multi-stage PMU placement

BPSO:

Binary particle swarm optimization

ILP:

Integer linear programming

HS:

Harmony search

HAS:

Harmony search algorithm

SCUC:

Security constrained unit commitment

HM:

Harmony memory

HMS:

Harmony memory size

HMCR:

Harmony memory considering rate

PAR:

Pitch adjustment rate

NH:

New harmony

NHS:

New harmony size

MaxIter:

Maximum number of improvisations

\(A\) :

Connectivity matrix

\(A(i,j)\) :

Binary connectivity parameter between buses \(\text{ i }\) and \(\text{ j }\)

N:

The number of buses in the system

\(X\) :

A matrix showing installation status of the PMUs in the power system

\(X(i)\) :

The elements of PMU installation matrix

\(X_i\) :

The set of possible range of values for each decision variable

\(x\) :

The set of each decision variable \(\text{ x }_i\)

\(\text{ LX }_i\) :

Lower bound for each decision variable

\(UX_i\) :

Upper bound for each decision variable

\(X_i^t\) :

Element in the \(t \)th row and \(j\)th column of the HM

\(bw\) :

Distance bandwidth

\(rand\) :

Randomly selected number

\(y_{ij}\) :

Element in the \(i\)th row and \(j\)th column of the NH

\(x_{pj}\) :

Element in the \(p\)th row and \(j\)th column of the HM

\(W\) :

Weight array

References

  1. Mohammadi-Ivatloo, B.: Optimal placement of PMUs for power system observability using topology based formulated algorithms. J. Appl. Sci. 9(13), 2463–2468 (2009)

    Article  Google Scholar 

  2. Miljanić, Z., Djurović, I., Vujošević, I.: Multiple channel PMU placement considering communication constraints. Energy Syst. 4(2), 125–135 (2013)

    Article  Google Scholar 

  3. Korres, G.N., Manousakis, N.M.: Observability analysis and restoration for systems with conventional and phasor measurements. Int. Trans. Electr. Energy Syst. 23(8), 1548–1566 (2013)

    Article  Google Scholar 

  4. Chakrabarti, S., Kyriakides, E., Eliades, D.G.: Placement of synchronized measurements for power system observability. Power Deliv. IEEE Trans. 24(1), 12–19 (2009)

    Article  Google Scholar 

  5. Li, Q., et al.: An information-theoretic approach to PMU placement in electric power systems. Smart Grid IEEE Trans. 4(1), 446–456 (2013)

    Article  Google Scholar 

  6. Mahari, A., Seyedi, H.: Optimal PMU placement for power system observability using BICA, considering measurement redundancy. Electr. Power Syst. Res. 103, 78–85 (2013)

    Article  Google Scholar 

  7. Amin, M.M., Moussa, H.B., Mohammed, O.A.: Wide area measurement system for smart grid applications involving hybrid energy sources. Energy Syst. 3(1), 3–21 (2012)

    Article  Google Scholar 

  8. Mohammadi-Ivatloo, B., Hosseini, S.: Optimal PMU placement for power system observability considering secondary voltage control. In: Electrical and Computer Engineering, 2008. CCECE 2008, Canadian Conference. IEEE (2008)

  9. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)

    Article  Google Scholar 

  10. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  11. Rajasekhar, B., Chandel, A.K., Vedik, B.: Differential evolution based optimal PMU placement for fault observability of power system. In: Engineering and Systems (SCES), 2013 Students Conference. IEEE (2013)

  12. Peng, C., Sun, H., Guo, J.: Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm. Int. J. Electr. Power Energy Syst. 32(8), 886–892 (2010)

    Article  Google Scholar 

  13. Su, C., Chen, Z.: Optimal placement of phasor measurement units with new considerations. In: Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific. IEEE (2010)

  14. Nuqui, R.F., Phadke, A.G.: Phasor measurement unit placement techniques for complete and incomplete observability. Power Deliv. IEEE Trans. 20(4), 2381–2388 (2005)

    Article  Google Scholar 

  15. Aminifar, F., et al.: Observability enhancement by optimal PMU placement considering random power system outages. Energy Syst. 2(1), 45–65 (2011)

    Article  Google Scholar 

  16. Koutsoukis, N.C., et al.: Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method. Gener. Transm. Distrib. IET 7(4), 347–356 (2013)

    Article  Google Scholar 

  17. Aminifar, F., et al.: Optimal placement of phasor measurement units using immunity genetic algorithm. Power Deliv. IEEE Trans. 24(3), 1014–1020 (2009)

    Article  Google Scholar 

  18. Azizi, S., Salehi Dobakhshari, A., Nezam Sarmadi, S.A., Ranjbar, A.M., Gharehpetian, G.B.: Optimal multi-stage PMU placement in electric power systems using Boolean algebra. Int. Trans. Electr. Energy Syst. 24(4), 562–577 (2014)

  19. Huang, J., Wu, N.E.: Fault-tolerant placement of phasor measurement units based on control reconfigurability. Control Eng. Pract. 21(1), 1–11 (2013)

    Article  Google Scholar 

  20. Abbasy, N.H., Ismail, H.M.: A unified approach for the optimal PMU location for power system state estimation. Power Syst. IEEE Trans. 24(2), 806–813 (2009)

    Article  Google Scholar 

  21. Mahaei, S.M., Hagh, M.T.: Minimizing the number of PMUs and their optimal placement in power systems. Electr. Power Syst. Res. 83(1), 66–72 (2012)

    Article  Google Scholar 

  22. Amin, N., Banejad, M.: Generalized formulation for optimal placement of PMUs considering single unit or single branch outage. In: Electrical Engineering (ICEE), 2013 21st Iranian Conference. IEEE (2013)

  23. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  24. Srinivasa Rao, R., et al.: Optimal network reconfiguration of large-scale distribution system using harmony search algorithm. Power Syst. IEEE Trans. 26(3), 1080–1088 (2011)

    Article  Google Scholar 

  25. Verma, A., Panigrahi, B., Bijwe, P.: Harmony search algorithm for transmission network expansion planning. Gener. Transm. Distrib. IET 4(6), 663–673 (2010)

    Article  Google Scholar 

  26. Samiee, M., Amjady, N., Sharifzadeh, H.: Security constrained unit commitment of power systems by a new combinatorial solution strategy composed of enhanced harmony search algorithm and numerical optimization. Int. J. Electr. Power Energy Syst. 44(1), 471–481 (2013)

    Article  Google Scholar 

  27. Coelho, L.D.S., Mariani, V.C.: An improved harmony search algorithm for power economic load dispatch. Energy Conver. Manag. 50(10), 2522–2526 (2009)

    Article  MathSciNet  Google Scholar 

  28. Sivasubramani, S., Swarup, K.: Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energy Syst. 33(3), 745–752 (2011)

    Article  Google Scholar 

  29. Wang, L., et al.: An improved adaptive binary harmony search algorithm. Inf. Sci. 232, 58–87 (2013)

    Article  Google Scholar 

  30. Bian, X., Qiu, J.: Adaptive clonal algorithm and its application for optimal PMU placement. In: Communications, Circuits and Systems Proceedings, 2006 International Conference. IEEE (2006)

  31. Jamuna, K., Swarup, K.: Multi-objective biogeography based optimization for optimal PMU placement. Appl. Soft Comput. 12(5), 1503–1510 (2012)

    Article  Google Scholar 

  32. Chakrabarti, S., Kyriakides, E.: Optimal placement of phasor measurement units for power system observability. Power Syst. IEEE Trans. 23(3), 1433–1440 (2008)

    Article  Google Scholar 

  33. Jamuna, K., Swarup, K.: Power system observability using biogeography based optimization. In: Sustainable Energy and Intelligent Systems (SEISCON 2011), International Conference. IET (2011)

  34. Bedekar, P.P., Bhide, S.R., Kale, V.S.: Optimum PMU placement considering one line/one PMU outage and maximum redundancy using Genetic algorithm. In: Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2011 8th International Conference. IEEE (2011)

  35. Ahmadi, A., Alinejad-Beromi, Y., Moradi, M.: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy. Expert Syst. Appl. 38(6), 7263–7269 (2011)

    Article  Google Scholar 

  36. Xu, J., et al.: Optimal PMU placement for wide-area monitoring using chemical reaction optimization. In: Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES. IEEE (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mohammadi-Ivatloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari-Heris, M., Mohammadi-Ivatloo, B. Optimal placement of phasor measurement units to attain power system observability utilizing an upgraded binary harmony search algorithm. Energy Syst 6, 201–220 (2015). https://doi.org/10.1007/s12667-014-0135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-014-0135-3

Keywords

Navigation