Skip to main content

Advertisement

Log in

Development of net energy ratio and emission factor for quad-generation pathways

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The conversion of biomass to four different outputs via gasification is a renewable technology that could reduce the use of fossil fuels and greenhouse gas (GHG) emissions. This study investigates the energy aspects for a new concept of biomass based quad-generation plant producing power, heat, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3 and 7.2. The lowest limit corresponds to the wood chips-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Statistics Denmark: National Statistical Database (Statistikbanken). Danmarks Statistik, København. http://www.dst.dk (2010). Accessed Nov 2012

  2. The Danish Energy Agency: Biomass in the Danish Energy Sector. http://www.ens.dk/en-US/supply/Renewable-energy/Bioenergy/Sider/Forside.aspx (2012). Accessed Nov 2012

  3. Turkenburg, W.C.: Renewable energy technologies. In: Goldemberg, J. (ed.) World Energy Assessment—Energy and the Challenge of Sustainability. United Nations Development Programme, New York (2000)

    Google Scholar 

  4. Brown R.C.: Thermochemical technologies for biomass energy. In: IEEE Power Engineering Society General Meeting, pp. 1650–1652 (2004)

  5. Mohan, D., Pittman Jr, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)

  6. Faaij, A.: Modern biomass conversion technologies. Mitig. Adapt. Start. Glob. Change 11, 343–375 (2006)

    Google Scholar 

  7. Claassen, P.A.M., van Lier, J.B., Lopez Contreras, A.M., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M., et al.: Utilization of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52, 741–755 (1999)

  8. Steubing, B., Zah, R., Ludwig, C.: Life cycle assessment of SNG from wood for heating, electricity, and transportation, biomass and bio energy 35, 2950–2960 (2011)

  9. Rosendahl, L.: Biomass resources, fuel preparation and utilization for improving the fuel flexibility of advanced power plants. In: Advanced Power Plant Materials, Design and Technology. Woodhead Publishing, India (2010)

  10. Sarkar, S., Kumar, A.: Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands. Energy 35(2), 582–591 (2010)

    Article  Google Scholar 

  11. Sarkar, S., Kumar, A.: Large-scale biohydrogen production from bio-oil. Bio Resour. Technol. 101(19), 7350–7361(2010)

  12. kabir, M.R., Kumar, A.: Development of net energy ratio and emission factor for biohydrogen production pathways. Bioresour. Technol. 102, 8972–8985 (2011)

    Article  Google Scholar 

  13. Houghton, J.: Global Warming. The Complete Breefing, 3rd edn. Cambridge University Press, UK, p. 351 (2004)

  14. Nielsen, O., Winther, M., Mikkelsen, M.H., Gyldenkærne, S., Lyck, E., Plejdrup, M., Hoffmann, L., Thomsen, M., Fauser, P.: Projection of Greenhouse Gas Emissions 2007 to 2025. In: NERI Technical Report No. 703. Aarhus University, National Environmental Research Institute, Roskilde, Denmark, p. 209 (2009)

  15. Dalgaard, T., Halberg, N., Fenger, J.: Can organic farming help to reduce national energy consumption and emissions of greenhouse gasses in Denmark? In: van Lerland, E.C., Lansink, A.O. (eds.) Economics of Sustainable Energy in Agriculture Economy and Environment, vol. 24. Kluwer Academic Publishers, Dordrecht, pp. 191–204 (2002) (ISBN 1-4020-0785-X)

  16. Gyldenkærne, S., Petersen, B.M., Olesen, J.E.: Konsekvenser og muligheder ved Danmarks deltagelse i Kyotoprotokollens artikel 3.4 på landbrugsområdet. In: Working Report No. 5. Danish Environmental Agency, Copenhagen, p. 50 (2007)

  17. Danish Energy Outlook: The Danish Energy Agency. http://www.ens.dk/en-us. (2011) Accessed May 2011

  18. Larson, ED.: A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain. Dev. 10(2), 109–126 (2006)

  19. Kiwjaroun, C., Tubtimdee, C., Piumsomboon, P.: LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods 7(2), 143–153 (2009)

  20. Koroneos, C., Dompros, A., Roumbas, G., Moussiopoulos, N.: Life cycle assessment of hydrogen fuel production processes. Int. J. Hydrogen Energy 29(14), 1443–1450 (2004)

    Article  Google Scholar 

  21. Nilsen, C.: Utilization of straw and similar agricultural residues. Biomass Bioenergy 9(1–5), 315–323 (1995)

  22. Kumar, A., Cameron, J.B., Flynn, P.C.: Biomass power cost and optimum plant size in western Canada. Biomass Bioenergy 24, 445–464 (2003)

  23. Moller, B., Nielsen Per, S.: Analyzing transport costs of Danish forest wood chip resources by means of continuous cost surfaces. Biomass Bioenergy 31, 291–298 (2007)

    Article  Google Scholar 

  24. Borjesson, P.: Energy analysis of biomass production and transportation. Biomass Bioenergy 11, 305–318 (1996)

    Article  Google Scholar 

  25. Nord-Larsen, T., Talbot, B.: Assessment of forest-fuel resources in Denmark: technical and economic availability. Biomass Bioenergy 27, 97–109 (2004)

    Article  Google Scholar 

  26. Spath, P.L., Mann, M.K.: Life Cycle Assessment of a Natural Gas Combined-Cycle Power Generation System, NREL/TP-570-27715. National Renewable Energy Laboratory (NREL), Golden (2000)

  27. Moore, F.T.: Economies of scale: some statistical evidence. Q. J. Econ. 73(2), 232–245 (1959)

  28. Yin, X.L., Wu, C.Z., Zheng, S.P., Chen, Y.: Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy 23, 181–187 (2002)

  29. Hofbauer. H., Veronik, G., Fleck, T., Rauch, R., Mackinger, H., Fercher, E.: The FICFB-gasification process. In: Bridgwater, A.V., Boocock, D.G.B. (eds.) Developments in Thermochemical Biomass Conversion, vol. 2. Blackie Academic and Professional, London, pp. 1016–1025 (1997)

  30. Gassner, M., Mare’chal, F.: Thermodynamic comparison of the FICFB and viking gasification concepts. Energy 34(10), 1744–1753 (2009)

    Article  Google Scholar 

  31. Larson, E.D., Jin, H., Celik, F.E.: Gasification-Based Fuels and Electricity Production from Biomass, Without and with Carbon Capture and Storage. Princeton Environmental Institute, Princeton University, Princeton. http://www.princeton.edu/pei/energy/publications/texts/LarsonJinCelik-Biofuels-October-2005.pdf (2005)

  32. Hamelinck, C.N., Suurs, R.A.A., Faaij, A.P.C.: International bioenergy transport costs and energy balance: Biomass Bioenergy 29, 114–134 (2005)

  33. Chungen, Y., Rosendahl, L.A., Kær, S.K.: Grate-firing of biomass for heat and power production. Energy Combus. Sci. 34, 725–754 (2008)

  34. Fl, Erik, Kristensen, J., Kristensen, J.K.: Development and test of small-scale batch-!red straw boilers in Denmark. Biomass Bioenergy 26, 561–569 (2004)

    Article  Google Scholar 

  35. Schultz, G.: Modern biomass utilization. Energi E2 Denmark. http://unfccc.int/files/methods_and_science/mitigation/application/pdf/eu_schultz.pdf. Accessed Nov 2012

  36. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002)

    Article  Google Scholar 

  37. Callesen, I., Grohnheit, P.E., Østergard, H.: Optimization of bioenergy yield from cultivated land. Biomass Bioenergy. 34, 1348–1362 (2010)

  38. Boehmel, C., Lewandowski, I., Claupein, W.: Comparing annual and perennial energy cropping systems with different management intensities. Agric. Syst. 96, 224–236 (2008)

    Article  Google Scholar 

  39. Bernesson, S., Nilsson, D., Hansson, P.A.: A limited LCA comparing large- and small-scale production of rape methyl ester (RME) under Swedish conditions. Biomass Bioenergy 26(6), 545–559 (2004)

    Article  Google Scholar 

  40. Furuholt, E.: Life cycle assessment of gasoline and diesel. Resour. Conserv. Recycl. 14(3–4), 251–263 (1995)

    Article  Google Scholar 

  41. Spath, P.L., Mann, M.K.: Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, NREL/TP-570-27637. National Renewable EnergyLaboratory (NREL), Golden (2001)

  42. Elsayed, M.A., Mortimer, M.D.: Carbon and energy modeling of biomass systems: conversion plant and data updates, ETSU B/U1/00644/REP. Sheffield Hallam University, Sheffield. http://webarchive.nationalarchives.gov.uk/tna/, http://www.dti.gov.uk/renewables/publications/pdfs/bu100644.pdf/ (2001). Accessed May 2014

  43. Mann, M.K., Spath, P.L.: Life Cycle Assessment of a Biomass Gasification Combined-Cycle System. NREL, Midwest Research Institute, Kansas, USA (1997)

  44. Pootakham, T., Kumar, A.: A comparison of pipeline versus truck transport of bio-oil. Bioresour. Technol. 101(1), 414–421 (2010)

    Article  Google Scholar 

  45. Laughton, M.A., Warne, D.F.: Electrical Engineer’s Reference Book. Newnes (2003)

  46. Rudra, S.: Design and system analysis of quad-generation plant based on biomass gasification integrated with district heating. PhD thesis. http://homes.et.aau.dk/mbb/supervision/reports/souman-2013.pdf (2014). Accessed May 2014

  47. Liu, H., Polenske, K.R., Xi, Y., Guo, J.: Comprehensive evaluation of effects of straw-based electricity generation: a Chinese case. Energy Policy 38, 6153–6160 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This project has been supported by The European Regional Development Fund, Grant No: ERDFN-09-0060. The authors would like to acknowledge the support of the FleksEnergi project for PhD Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souman Rudra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudra, S., Rosendahl, L. & Kumar, A. Development of net energy ratio and emission factor for quad-generation pathways. Energy Syst 5, 719–735 (2014). https://doi.org/10.1007/s12667-014-0126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-014-0126-4

Keywords

Navigation