Skip to main content

Advertisement

Log in

Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd–Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a_{v}\) :

Specific surface area of catalyst pellet (m\(^{2}\) m\(^{-3}\))

\(A_{c}\) :

Cross section area of each tube (m\(^{2}\))

\(A_{i}\) :

Inside area of inner tube (m\(^{2}\))

\(A_{o}\) :

Outside area of inner tube (m\(^{2}\))

\(A_{s}\) :

lateral area of each tube (m\(^{2}\))

\(C\) :

Total concentration (mol m\(^{-3}\))

\(C_{p}\) :

Specific heat of the gas at constant pressure (J mol\(^{-1}\))

\(d_{p}\) :

Particle diameter (m)

\(D_{i}\) :

Tube inside diameter (m)

\(D_{ij}\) :

Binary diffusion coefficient of component \(i\) in \(j\) (m\(^{2}\) s\(^{-1}\))

\(D_{im}\) :

Diffusion coefficient of component \(i\) in the mixture (m\(^{2}\) s\(^{-1}\))

\(D_{o}\) :

Tube outside diameter (m)

\(D_{sh}\) :

Shell inside diameter (m)

\(f_{i}\) :

Partial fugacity of component \(i\) (bar)

\(F\) :

Total molar flow rate (mol s\(^{-1}\))

\(G\) :

Mass velocity (kg m\(^{-2}\) s\(^{-1}\))

\(h_{f}\) :

Gas-solid heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

\(h_{i}\) :

Heat transfer coefficient between fluid phase and reactor wall in exothermic side (W m\(^{-2}\) K\(^{-1}\))

\(h_{o}\) :

Heat transfer coefficient between fluid phase and reactor wall in endothermic side (W m\(^{-2}\) K\(^{-1}\))

\(\Delta H_{f,i}\) :

Enthalpy of formation of component \(i\) (J mol\(^{-1}\))

\(j_{H}\) :

permeation rate of hydrogen through the Pd–Ag membrane(mol/s)

\(K\) :

Rate constant of dehydrogenation reaction (mol m\(^{-3}\) Pa\(^{-1}\) s\(^{-1}\))

\(k_{1}\) :

Rate constant for the 1st rate equation of methanol synthesis reaction (mol kg\(^{-1}\) s\(^{-1}\) bar\(^{-1/2}\))

\(k_{2}\) :

Rate constant for the 2nd rate equation of methanol synthesis reaction (mol kg\(^{-1}\) s\(^{-1}\) bar\(^{-1/2}\))

\(k_{3}\) :

Rate constant for the 3rd rate equation of methanol synthesis reaction (mol kg\(^{-1}\) s\(^{-1}\) bar\(^{-1/2}\))

\(k_{g}\) :

Mass transfer coefficient for component \(i\) (m s\(^{-1}\))

\(K\) :

Conductivity of fluid phase (W m\(^{-1}\) K\(^{-1}\))

\(K_{B}\) :

Adsorption equilibrium constant for benzene (Pa\(^{-1}\))

\(K_{i}\) :

Adsorption equilibrium constant for component \(i\) in methanol synthesis reaction (bar\(^{-1}\))

\(K_{p}\) :

Equilibrium constant for dehydrogenation reaction (Pa\(^{3}\))

\(K_{pi}\) :

Equilibrium constant based on partial pressure for component \(i\) in methanol synthesis reaction

\(K_{w}\) :

Thermal conductivity of reactor wall (W m\(^{-1}\) K\(^{-1}\))

\(L\) :

Reactor length (m)

\(M_{i}\) :

Molecular weight of component \(i\) (g mol\(^{-1}\))

\(N\) :

Number of components (N \(=\) 6 for methanol synthesis reaction, N \(=\) 3 for dehydrogenation reaction)

\(P\) :

Total pressure (for exothermic side: bar; for endothermic side: Pa)

\(P_{i}\) :

Partial pressure of component \(i\) (Pa)

\(r_{1}\) :

Rate of reaction for hydrogenation of CO (mol kg\(^{-1}\) s\(^{-1}\))

\(r_{2}\) :

Rate of reaction for hydrogenation of CO\(_{2}\) (mol kg\(^{-1}\) s\(^{-1}\))

\(r_{3}\) :

Rate of reversed water-gas shift reaction (mol kg\(^{-1}\) s\(^{-1}\))

\(r_{4}\) :

Rate of reaction for dehydrogenation of cyclohexane (mol m\(^{-3}\) s\(^{-1}\))

\(r_{i}\) :

Reaction rate of component \(i\) (for exothermic reaction: mol kg\(^{-1}\) s\(^{-1}\); for endothermic reaction: mol m\(^{-3}\) s\(^{-1}\))

\(R\) :

Universal gas constant (J mol\(^{-1}\) K\(^{-1}\))

\(R_{p}\) :

Particle radius (m)

Re :

Reynolds number

Sc \(_{i}\) :

Schmidt number of component \(i\)

\(T\) :

Temperature (K)

\(u\) :

Superficial velocity of fluid phase (m s\(^{-1}\))

\(U\) :

Overall heat transfer coefficient between exothermic and endothermic sides (W m\(^{-2}\) K\(^{-1}\))

\(v_{ci}\) :

Critical volume of component \(i\) (cm\(^{3}\) mol\(^{-1}\))

\(y_{i}\) :

Mole fraction of component \(i\) (mol mol\(^{-1}\))

\(z\) :

Axial reactor coordinate (m)

\(\mu \) :

Viscosity of fluid phase (kg m\(^{-1}\) s\(^{-1}\))

\(\rho \) :

Density of fluid phase (kg m\(^{-3}\))

\(\rho _{b}\) :

Density of catalytic bed (kg m\(^{-3}\))

\(\tau \) :

Tortuosity of catalyst

g:

In bulk gas phase

s:

At surface catalyst

0:

Inlet conditions

\(B\) :

Benzene

\(C\) :

Cyclohexane

\(i\) :

Chemical species

\(j\) :

Reactor side

\(k\) :

Reaction number index

References

  1. Goltsov, V.A., Veziroglu, T.N., Goltsova, L.F.: Hydrogen civilization of the future—a new conception of the IAHE. Int. J. Hydrogen Energy 31, 153–159 (2006)

    Article  Google Scholar 

  2. Ni, M., Leung, D.Y.C., Leung, M.K.H., Sumathy, K.: An overview of hydrogen production from biomass. Fuel Process. Technol. 87, 461–472 (2006)

    Article  Google Scholar 

  3. Ni, M., Leung, M.K.H., Sumathy, K., Leung, D.Y.C.: Potential of renewable hydrogen production for energy supply in Hong Kong. Int. J. Hydrogen Energy 31, 1401–1412 (2006)

    Article  Google Scholar 

  4. Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO\(_{2}\) for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007)

    Article  Google Scholar 

  5. Ye, G., Xie, D., Qiao, W., Grace, J.R., Lim, C.J.: Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus. Int. J. Hydrogen Energy 34, 4755–4762 (2009)

    Article  Google Scholar 

  6. Adris, A.M., Lim, C.J., Grace, J.R.: The fluidized-bed membrane reactor for steam methane reforming: model verification and parametric study. Chem. Eng. Sci. 52, 1609–1622 (1997)

    Article  Google Scholar 

  7. Biniwale, R.B., Kariya, N., Ichikawa, M.: Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt. Catal. Lett. 105, 83–87 (2005)

    Article  Google Scholar 

  8. Khademi, M.H., Jahanmiri, A., Rahimpour, M.R.: A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydrogen Energy 34, 5091–5107 (2009)

    Article  Google Scholar 

  9. Khademi, M.H., Rahimpour, M.R., Jahanmiri, A.: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen permselective membrane thermally coupled reactor. Int. J. Hydrogen Energy 35, 1936–1950 (2010)

    Article  Google Scholar 

  10. Khademi, M.H., Setoodeh, P., Rahimpour, M.R., Jahanmiri, A.: Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method. Int. J. Hydrogen Energy 34, 6930–6944 (2009)

    Article  Google Scholar 

  11. Rahimpour, M.R., Ghader, S.: Theoretical investigation of a Pd-membrane reactor for methanol synthesis. Chem. Eng. Technol. 26, 902–907 (2003)

    Article  Google Scholar 

  12. Buxbaum, R.E., Kinney, A.B.: Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium. Ind. Eng. Chem. Res. 35, 530–537 (1996)

    Article  Google Scholar 

  13. Lovik, I., Hillestad, M., Hertzberg, T.: Long term dynamic optimization of a catalytic reactor system. Comput. Chem. Eng. 22, 707–710 (1998)

    Article  Google Scholar 

  14. Rahimpour, M.R., Fathikalajahi, J., Jahanmiri, A.: Selective kinetic deactivation model for methanol synthesis from simultaneous reaction of CO\(_{2}\) and CO with H\(_{2}\) on a commercial Copper/Zinc oxide catalyst. Can. J. Chem. Eng. 76, 753–761 (1998)

    Article  Google Scholar 

  15. Velardi, S.A., Barresi, A.A.: Methanol synthesis in a forced unsteady-state reactor network. Chem. Eng. Sci. 57(15), 2995–3004 (2002)

    Article  Google Scholar 

  16. Rahimpour, M.R.: A two-stage catalyst bed concept for conversion of carbon dioxide into methanol. Fuel Process. Technol. 89(5), 556–566 (2008)

    Article  Google Scholar 

  17. Rahimpour, M.R., Lotfinejad, M.: A comparison of co-current and counter-current modes of operation for a dual type industrial methanol reactor. Chem. Eng. Process. 47, 1819–1830 (2008)

    Article  Google Scholar 

  18. Rahimpour, M.R., Khosravanipour Mostafazadeh, A., Barmaki, M.M.: Application of hydrogen-permselective Pd-based membrane in an industrial single-type methanol reactor in the presence of catalyst deactivation. Fuel Process. Technol. 89, 1396–1408 (2008)

    Article  Google Scholar 

  19. Rahimpour, M.R., Ghader, S.: Enhancement of CO conversion in a novel Pd–Ag membrane reactor for methanol synthesis. Chem. Eng. Process. 43, 1181–1188 (2004)

    Article  Google Scholar 

  20. Rahimpour, M.R., Lotfinejad, M.: Enhancement of methanol production in a membrane dual type reactor. Chem. Eng. Technol. 30, 1062–1076 (2007)

    Article  Google Scholar 

  21. Rahimpour, M.R., Lotfinejad, M.: Co-current and counter-current configurations for a membrane dual type methanol reactor. Chem. Eng. Technol. 31(1), 38–57 (2008)

    Article  Google Scholar 

  22. Rahimpour, M.R., Bayat, M.: Comparative study of two different hydrogen redistribution strategies along a fluidized-bed hydrogen permselective membrane reactor for methanol synthesis. Ind. Eng. Chem. Res. 49, 472–480 (2010)

    Article  Google Scholar 

  23. Rahimpour, M.R., Rahmani, F., Bayat, M.: Contribution to emission reduction of CO\(_{2}\) by a fluidized-bed membrane dual-type reactor in methanol synthesis process. Chem. Eng. Process. 49, 589–598 (2010)

    Article  Google Scholar 

  24. Rahimpour, M.R., Bayat, M., Rahmani, F.: Dynamic simulation of a cascade fluidized-bed membrane reactor in the presence of long-term catalyst deactivation for methanol synthesis. Chem. Eng. Sci. 65, 4239–4249 (2010)

    Article  Google Scholar 

  25. Rahimpour, M.R., Bayat, M., Rahmani, F.: Enhancement of methanol production in a novel cascading fluidized-bed hydrogen permselective membrane methanol reactor. Chem. Eng. J. 157, 520–529 (2010)

    Article  Google Scholar 

  26. Rahimpour, M.R., Rahmani, F., Bayat, M., Pourazadi, E.: Enhancement of simultaneous hydrogen production and methanol synthesis in thermally coupled double-membrane reactor. Int. J. Hydrogen Energy 36, 284–298 (2011)

    Article  Google Scholar 

  27. Bayat, M., Rahimpour, M.R.: Simultaneous utilization of two different membranes for intensification of ultrapure hydrogen production from recuperative coupling autothermal multitubular reactor. Int. J. Hydrogen Energy 36, 7310–7325 (2011)

    Article  Google Scholar 

  28. Rahimpour, M.R., Bayat, M.: Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydrogen Energy 36, 6616–6627 (2011)

    Article  Google Scholar 

  29. Aris, R.: The Optimal Design of Chemical Reactors. Academic Press, New York (1961)

    MATH  Google Scholar 

  30. Rahimpour, M.R.: A dual catalyst bed concept for industrial methanol synthesis. Chem. Eng. Commun. 194, 1638–1653 (2007)

    Article  Google Scholar 

  31. Rezaie, N., Jahanmiri, A., Moghtaderi, B., Rahimpour, M.R.: A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation. Chem. Eng. Process. 44, 911–921 (2005)

    Article  Google Scholar 

  32. Graaf, G.H., Scholtens, H., Stamhuis, E.J., Beenackers, A.A.C.M.: Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem. Eng. Sci. 45, 773–783 (1990)

    Article  Google Scholar 

  33. Graaf, G.H., Sijtsema, P.J.J.M., Stamhuis, E.J., Joosten, G.E.H.: Chemical equilibrium in methanol synthesis. Chem. Eng. Sci. 41, 2883–2890 (1986)

    Article  Google Scholar 

  34. Itoh, N.: A membrane reactor using palladium. AIChE J. 33, 1576–1578 (1987)

    Article  Google Scholar 

  35. Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw-Hill, New York (1977)

    Google Scholar 

  36. Cussler, E.L.: Diffusion, Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  37. Wilke, C.R.: Estimation of liquid diffusion coefficients. Chem. Eng. Prog. 45, 218–224 (1949)

    Google Scholar 

  38. Reid, R.C., Sherwood, T.K., Prausnitz, J.: The Properties of Gases and Liquids. McGraw-Hill, New York (1977)

    Google Scholar 

  39. Smith, J.M.: Chemical Engineering Kinetics. McGraw-Hill, New York (1980)

    Google Scholar 

  40. Holman, J.P.: Heat Transfer. McGraw-Hill, New York (1989)

    Google Scholar 

  41. Hara, S., Xu, W.C., Sakaki, K., Itoh, N.: Kinetics and hydrogen removal effect for methanol decomposition. Ind. Eng. Chem. Res. 38, 488–492 (1999)

    Article  Google Scholar 

  42. Shiraz Petrochemical Complex. Operating and Technical Data of Methanol Plant, Shiraz, Iran (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rahimpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayat, M., Rahimpour, M.R. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor. Energy Syst 3, 401–420 (2012). https://doi.org/10.1007/s12667-012-0062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-012-0062-0

Keywords

Navigation