Skip to main content

Advertisement

Log in

Concentrations of heavy metals and measurement of 40K in mine tailings in Zacatecas, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to identify wild plant species with potential for remediation of As and Pb and to measure the 40K activity on soil mine tailings in Sombrerete, Zacatecas (North Central Mexico). The analysis of As and Pb was performed by atomic absorption spectrometry, while the concentration of 40K was carried out by low-resolution gamma-ray spectrometry. Plants growing on two mine tailings show ability to accumulate or tolerate heavy metals. Major family represented in the area was Asteraceae. Arsenic showed the highest concentrations, in soils, of 2004 and 1101 mg/kg, respectively, while Pb at 132 and 113 mg/kg, respectively. These results evidence that the tailings are highly contaminated and represent a potential risk for population and the environment. Wild plants that showed maximum values of As in their shoots were Asphodelus fistulosus (447 mg/kg), Pennisetum villosum (342 mg/kg) and Purshia mexicana (268 mg/kg). Presence of P. mexicana shrub is reported for the first time as accumulator of As in semi-arid region of Mexico. The concentration of 40K in soil samples from the mine tailings reported for the first time is in agreement with the mean values reported for the world. The wild plant species identified could be used for re-vegetation and stabilization of the mining wastes and contribute to decrease As bioavailability in arid and semi-arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aide M, Andrews R, Curry R, Kelley J, Koepp K, New K, Westhoff E (2007) Elemental release patterns of low–level Pb–Zn Dolomitic tailings in Missouri. Trans Missouri Acad Sci 41:1–6

    Google Scholar 

  • Al-Hamarneh IF, Awadallah MI (2009) Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan. Radiat Meas 44:102–110

    Google Scholar 

  • Armienta MR, Rodríguez R, Cruz O (1997) Arsenic content in hair of people exposed to natural arsenic polluted groundwater at Zimapan, Mexico. Bull Environ Contam Toxicol 59:583–658

    Google Scholar 

  • Baccouche S, Al-Azmi D, Karunakara N, Trabelsi A (2012) Application of the Monte Carlo mehod for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples. Appl Radiat Isot 70:227–232

    Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Balleza JJ, Villaseñor JL (2011) Contribución del estado de Zacatecas (México) a la conservación de la riqueza florística del Desierto Chihuahuense. Acta Bot Mex 94:61–89

    Google Scholar 

  • Barrutia O, Artetxe U, Hernández A, Olano JM, García-Plazaola JI, Garbisu C, Becerril JM (2011) Native plant communities in an abandoned Pb–Zn mining area of Northern Spain: Implications for phytoremediation and germplasm preservation. Int J Phytorem 13:256–270

    Google Scholar 

  • Basu A, Saha D, Saha R, Ghosh T, Saha B (2014) A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed 40:447–485

    Google Scholar 

  • Bech J, Poschenrieder C, Barceló J, Lansac A (2002) Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnol 22(1–2):5–1

    Google Scholar 

  • Bitterli C, Bañuelos GS, Schulin R (2010) Use of transfer factors to characterize uptake of selenium by plants. J Geochem Expl 107:206–216

    Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Morel JL (2006) Heavy metal contamination from mining sites in south Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63(5):802–810

    Google Scholar 

  • Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 1–14

    Google Scholar 

  • Cavagnaro TR, Smith FA, Lorime MF, Haskard KA, Ayling SM, Smith SE (2001) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytol 149:105–113

    Google Scholar 

  • Calscape (2020) Mexican Cliffrose Purshia Mexicana. California Native Plant Society. https://calscape.org/Purshia-mexicana-(Mexican-Cliffrose)?srchcr=sc5f7fa06d2e167. Accessed 14 Feb 2020

  • Calderón RG, Rzedowski J (2001) Flora Fanerogámica del Valle de México. Instituto de Ecología, A.C. CONABIO México, p 1406

  • Camprubí A, González-Partida E, Valencia VA, Barra F (2015) Geochronology of Mexican mineral deposits. I: the San Martín polymetallic skarn, Zacatecas. Bol Soc Geol Mex 67(1):119–122

    Google Scholar 

  • Carrillo-González R, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144(1):84–92

    Google Scholar 

  • Casanovas R, Morant JJ, Salvadó M (2012) Energy and resolution calibration of NaI(Tl) and Lar3(Ce) scintillators and validation of an EGS5 Monte Carlo user code for efficiency calculations. Nucl Instrum Methods Phys Res A 675:78–83

    Google Scholar 

  • Casanovas R, Morant JJ, Salvadó M (2013) Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillator detectors. Appl Radiat Isot 80:49–55

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Google Scholar 

  • Conesa HM, Robinson BH, Schulin R, Nowack B (2007) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707

    Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: Still a promising tool? Sci World J 2012:1–10

    Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena- La Union mining district (SE Spain). Sci Total Environ 366:1–1

    Google Scholar 

  • Darabi-Golestan F, Hezarkhani A, Zare MR (2019) Geospatial analysis and assessment of 226Ra, 235U, 232Th, 137Cs, and 40K at Anzali wetland, north of Iran. Environ Monit Assess 191:390

    Google Scholar 

  • DelToro V (2007) [Online]. Banco de datos de la Comunidad Valenciana. http://bdb.cma.gva.es/ficha.asp. Accessed 24 Jan 2018

  • Du Laing G, Tack FM, Verloo MG (2003) Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal Chim Acta 497(1):191–198

    Google Scholar 

  • Evens A, Hryhorczuk D, Lanphear BP, Rankin KM, Lewis DA et al (2015) The impact of low-level lead toxicity on school performance among children in the Chicago Public Schools: a population-based retrospective cohort study. Environ Health 14:21. https://doi.org/10.1186/s12940-015-0008-9

    Article  Google Scholar 

  • Flores J, Albert LA (2004) Environmental lead in Mexico, 1999–2002. Rev Environ Contam Toxicol 181:37–10

    Google Scholar 

  • Flores-Tavizón E, Alarcon-Herrera MT, González-Elizondo S, Olguín EJ (2003) Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua, Mexico. Acta Biotechnol 23(2–3):113–211

    Google Scholar 

  • Flores TJM, Mitchell K, Ramos GMS, Guerrero BAL, Yamamoto FL, Avelar GFJ (2018) Effect of plant growth on Pb and Zn geoaccumulation in 300-year-old mine tailings of Zacatecas, México. Environ Earth Sci 77:386. https://doi.org/10.1007/s12665-018-7563-7

    Article  Google Scholar 

  • Franco-Hernández MO, Vásquez-Murrieta MS, Patiño-Siciliano A, Dendooven AL (2010) Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour Technol 101:3864–3869

    Google Scholar 

  • Garcia-Sanchez A, Alvarez-Ayuso E (2003) Arsenic in soils and waters and its relation to geology and mining activities (Salamanca Province, Spain). J Geochem Expl 80(1):69–79

    Google Scholar 

  • Gilmore G (2008) Practical Gamma-ray spectrometry, 2nd edn. Wiley, New York

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Goddard SL, Brow RJC (2014) Investigation into alternative sample preparation techniques for the determination of heavy metals in stationary source emission samples collected on quartz filters. Sensors (Basel) 14(11):21676–21692. https://doi.org/10.3390/s141121676

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Google Scholar 

  • Hayes SM, Root RA, Perdrial N, Maier R, Chorover J (2014) Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochim Cosmochim Acta 15(141):240–257

    Google Scholar 

  • Hou X, Teng W, Hu Y, Yang Z, Li C, Scullion J, Guo Q, Zheng R (2020) Potential phytoremediation of soil cadmium and zinc by diverse ornamental and energy grasses. BioResources 15(1):616–640

    Google Scholar 

  • Hu L, Wang R, Liu XL, Xu B, Xie TH, Li YY, Wang MK, Wang G, Chen YH (2018) Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Environ Sci Pollut Res 25(22):21671–21681. https://doi.org/10.1007/s11356-018-2311-9

    Article  Google Scholar 

  • Jooste A, Marr SM, Addo-Bediako A, Luus-Powell WJ (2015) Sharptooth catfish shows its metal: a case study of metal contamination at two impoundments in the Olifants River, Limpopo river system, South Africa. Ecotoxicol Environ Saf 112:96–104. https://doi.org/10.1016/j.ecoenv.2014.10.033

    Article  Google Scholar 

  • Karczewska A, Bogda A, Krysiak A (2007) Arsenic in soils in the areas of former mining and mineral processing in Lower Silesia, southwestern Poland. Trace Met Contam Environ 9:411–440

    Google Scholar 

  • Lee JH, Kim WI, Jeong EJ, Yoo JH, Kim JY et al (2011) Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines. Korean J Soil Sci Fert 44(1):38–47

    Google Scholar 

  • Lee SC, Kein CK, Lee DM, Kang HD (2001) Natural radionuclides content and radon exhalation rates in building material used in South Korea. Radiat Prot Dosim 94(3):269–274

    Google Scholar 

  • Lee SH, Oh JS, Lee JM, Lee KB, Park TS, Lujaniene G, Valiulis D, Sakalys J (2013) Distribution characteristics of 137Cs, Pu isotopes and 241Am in soil in Korea. Appl Radiat Isot 81:315–320

    Google Scholar 

  • Lema MW, Ijumba JN, Njau KN, Patrick A, Ndakidemi PA (2014) Environmental contamination by radionuclides and heavy metals through the application of phosphate rocks during farming and mathematical modeling of their impacts to the ecosystem. Int J Eng Res Gen Sci 2(4):852–863

    Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Google Scholar 

  • Liu CP, Luo CL, Yun Gao Y, Li FB, Lin LW, Wu CA, Li XD (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826

    Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 235–250

    Google Scholar 

  • Madruga MJ, Miró C, Reis M, Silva L (2018) Radiation exposure from natural radionuclides in building materials. Radiat Protect Dosim. https://doi.org/10.1093/rpd/ncy256

    Article  Google Scholar 

  • Manzanares-Acuña E, Vega-Carrillo HR, Salas-Luévano MA, Hernández-Dávila VM, Letechipía-de León C, Bañuelos-Valenzuela R (2006) Niveles de plomo en la población de alto riesgo y su entorno en San Ignacio, Fresnillo, Zacatecas, México. Salud Publica Mex 48:212–219

    Google Scholar 

  • McDowell FW, Clabaugh SE (1979) Ignimbrites of the Sierra Madre Occidental and their relation to the tectonic history of western Mexico. Geol Soc Am Spec 180:113–123

    Google Scholar 

  • Mendez MO, Maier RM (2008a) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59

    Google Scholar 

  • Mendez MO, Maier RM (2008b) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Google Scholar 

  • Mielke HW, Reagan PL (1998) Soil is an important pathway of human lead exposure. Environ Health Perspect 106:217–229

    Google Scholar 

  • Morin G, Calas G (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements 2:97–101

    Google Scholar 

  • Murty VRK, Karunakara N (2008) Natural radioactivity in the soil samples of Botswana. Radiat Meas 43:1541–1545

    Google Scholar 

  • Mwegoha W, Kihampa C (2010) Heavy metal contamination in agricultural soils and water in Dar es Salaam city, Tanzania. Afr J Environ Sci Technol 4(11):763–769

    Google Scholar 

  • Navarro-Noya YE, Jan-Roblero J, González-Chávez MC, Hernández-Gama R, Hernández-Rodríguez C (2010) Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie Van Leeuwenhoek 97:335–349

    Google Scholar 

  • Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, Jan-Roblero J, Martínez-Romero E, Hernández-Rodríguez C (2012) Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl Soil Ecol 62:52–60

    Google Scholar 

  • NORMA Oficial Mexicana NOM-021-RECNAT-2000 (2002) Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis

  • NORMA Oficial Mexicana NMX-AA-132-SCFI-2006 (2006) Muestreo de suelos para la identificación y la cuantificación de metales y metaloides y manejo de la muestra, México

  • Oliveira LSR, Oliveira CJV, Carvalho BMR, Cabral PAM, Vital HC, Andrade ER (2015) Distribution of 238U, 232Th, 40K and 137Cs concentrations in soil samples nearby a Nuclear laboratory, Capao Island, Brazil. Nucl Technol Radiat Prot 30:149–153

    Google Scholar 

  • Ortega-Larrocea MP, Xoconostle-Cázares B, Maldonado-Mendoza IE, Carrillo-González R, Hernández-Hernández J et al (2010) Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environ Pollut 158:1922–1931

    Google Scholar 

  • Oteef MD, Fawy KF, Abd-Rabboh HS, Idris AM (2015) Levels of zinc, copper, cadmium, and lead in fruits and vegetables grown and consumed in Aseer region, Saudi Arabia. Environ Monit Assess 187(676):1–11

    Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation. EMBO Rep 6:497–501

    Google Scholar 

  • Querol X, Alastuey A, Moreno N, Alvarez-Ayuso E, Garcia-Sanchez A, Cama J, Ayora C, Simon M (2006) Immobilization of heavy metals in polluted soils by the addition of zeolitic materials synthesized from coal fly ash. Chemosphere 62:171–180

    Google Scholar 

  • Quintana B, Pedrosa MC, Vázquez-Canelas I, Santamaría R, Sanjuán MA, Puertas F (2018) A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors. Appl Radiat Isot 134:470–476

    Google Scholar 

  • Ramírez-Ortiz J, Núñez MJ (2009) Study of soil contaminated with arsenic, cadmium and lead in ancient tailings in Zacatecas, México. Int J Chem Biomol Eng 2:3

    Google Scholar 

  • Ramos-Arroyo YR, Siebe-Grabach CD (2006) Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: estudio de caso en el Distrito de Guanajuato. México. Revista Mexicana de Ciencias Geológicas 23(1):54–74

    Google Scholar 

  • Rashid MH, Fardous Z, Chowdhury MAZ, Alam MK, Bari ML, Moniruzzaman M, Gan SH (2016) Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods. Chem Central J 10:7. https://doi.org/10.1186/s13065-016-0154-3

    Article  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal–accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rubin JN, Kyle JR (1988) Mineralogy and geochemistry of the San Martín skarn deposit, Zacatecas, Mexico. Econ Geol 83:1782–1792

    Google Scholar 

  • Rzedowski GC, Rzedowski J (2001) Flora fanerogámica del Valle de México. 2a ed. Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México

  • Rzedowski J, Calderón de RG (2005) Flora del Bajío y de Regiones Adyacentes. Rosaceae. Fascículo 135, Instituto de Ecología, A.C. Centro Regional del Bajío Pátzcuaro, Michoacán, pp. 113–117

  • Salas-Luévano MA, Manzanares-Acuña E, Letechipía-de León C, Vega-Carrillo HR (2009) Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian J Exp Sci 23(1):27–32

    Google Scholar 

  • Salas-Luevano MA, Manzanares-Acuña E, Letechipia-de Leon C, Hernandez-Davila VM, Vega-Carrillo HR (2011) Lead concentration in soil from an old mining town. J Radioanal Nucl Chem 289(1):35–39. https://doi.org/10.1007/s10967-011-1054-6

    Article  Google Scholar 

  • Salas-Luévano MA, Mauricio-Castillo JA, González-Rivera ML, Vega-Carrillo HR, Salas-Muñoz S (2017) Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environ Earth Sci 76:806. https://doi.org/10.1007/s12665-017-7139-y

    Article  Google Scholar 

  • Sánchez-López AS, González-Chávez MCA, Carrillo-González R, Vangronsveld J, Díaz-Garduño M (2015) Wild flora of mine tailings: Perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico. Int J Phytorem 17(5):476–484

    Google Scholar 

  • SE (Secretaría de Economía) (2006) NOM. Norma Oficial Mexicana NMX-AA-132-SCFI-2006. Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, y manejo de la muestra. http://www.economia.gob.mx. Accessed Feb 2018

  • SGM (Servicio Geológico Mexicano) (2017a) Anuario Estadístico de la Minería Mexicana, Edición 2018. Subsecretaría de Minería. Publicación No. 47. https://www.gob.mx/sgm/articulos/consulta-el-anuario-estadistico-de-la-mineria-mexicana. Accessed 22 May 2019

  • SGM (Servicio Geológico Mexicano) (2017b) Panorama minero del estado de Zacatecas. Secretaría de Economía. http://www.sgm.gob.mx/pdfs/ZACATECAS.pdf. Accessed 03 Nov 2018

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2002) Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Diario Oficial, Secretaría de Medio Ambiente y Recursos Naturales

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2010) Programa Nacional de Remediación de Sitios Contaminados. http://www.semarnat.gob.mx. Accessed 15 May 2012

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales/Secretaría de Salud) (2004a) Norma Oficial Mexicana NOM 147–SEMARNAT/SSA1–2004. Diario Oficial, Secretaría de Medio Ambiente y Recursos Naturales. http://www.profeps.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa-2004.pdf. Accessed 10 May 2017

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2004b). Información proporcionada por la Dirección General de Gestión Integral de Materiales y Actividades Riesgosas. INE, México

  • Shannon SS, Kramer WV (1973) Geology of Sierra Santa Lucia and Sierra Papanton, Durango and Zacatecas. Mex Soc Geol Mexicana Bol 34(1–2):33–41

    Google Scholar 

  • Sornette D, Kroger WM, Wheatley S (2019) New ways and needs for exploiting nuclear energy. Springer, Berlin

    Google Scholar 

  • Stafilov T, Aliu M, Sajn R (2010) Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica Region, Kosovo. Int J Environ Res Public Health 7:4050–4061

    Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Google Scholar 

  • UNSCEAR (2000) Sources, effects and risk of ionizing radiation. Report to the General Assembly with Scientific Annexes. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

  • US (2003) Cancer and The Environmet. The booklet from Department of Health and Human Services, USA. NIH Publication No. 03–2039. https://www.niehs.nih.gov/health/materials/cancer_and_the_environment_508.pdf. Accessed 07 Feb 2020

  • USDA (2004) Soil survey laboratory methods manual. National Soil Survey Center, Natural Resources Conservation Service, Soil Survey Investigations Report 42, version 4.0. United States Department of Agriculture, Washington DC

  • USDA–NRCS United States Department of Agriculture, Natural Resources Conservation Service. National Soil Survey Handbook, title 430–VI. http://soils.usda.gov/technical/handbook. Accessed 17 Jul 2018

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Theys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Google Scholar 

  • Villaseñor JL (1993) La familia Asteraceae en México. In: Gío-Argáez R, López-Ochoterena E (eds) Diversidad biológica de México. Rev Soc Mex Hist Nat (número especial), vol 44, pp 117–124

  • Vite TJ, Soto TJL, Vite TM, Aguilar OR, Susarrey HO (2007) Propiedades tribológicas de nuevos materiales cerámicos obtenidos de residuos industriales mineros. 8º Congreso Iberoamericano de Ingeniería Mecánica. Cusco, Perú

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Google Scholar 

  • Wild P, Kleinjans J (2003) Children and increased susceptibility to environmental carcinogens: evidence or empathy? Cancer Epidemiol Biomark Prev 12(12):1389–1394

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780

    Google Scholar 

  • Xu L, Xing XY, Liang JN, Peng JB, Zhou J (2019) In situ phytoremediation of copper and cadmium in a co-contaminated soil and its biological and physical effects. RSC Adv 9(2):993–1003. https://doi.org/10.1039/C8RA07645F

    Article  Google Scholar 

  • Zare MR, Kamali M, Kapourchali MF, Bagheri H, Bagheri MK, Abedini A, Pakzad HR (2016) Investigation of 235U, 226Ra, 232Th, 40K, 137Cs, and heavy metal concentration in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy. Environ Sci Pollut Res 23:3285–3299

    Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101(6):2063–2066

    Google Scholar 

Download references

Acknowledgements

This research was financed by Programas Educativos de la Dirección General de Institutos Descentralizados, Desarrollo Tecnológico e Innovación of the Public Education Secretary, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Salas-Luevano.

Ethics declarations

Conflict of interest

All authors declare that there is not any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Luevano, M.A., Puente-Cuevas, R. & Vega-Carrillo, H.R. Concentrations of heavy metals and measurement of 40K in mine tailings in Zacatecas, Mexico. Environ Earth Sci 80, 186 (2021). https://doi.org/10.1007/s12665-021-09460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09460-6

Keywords

Navigation