Skip to main content

Advertisement

Log in

Environmental impact in a rural community due to a lead recycling plant in Zacatecas, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A study was conducted to determine the concentrations of lead in soil and plants samples due to the exposure of emission from a metal-recycling plant in a rural community in Zacatecas, Mexico. The lead levels in the soils were determined as having cultivated crops, medicinal plants, and wild plants. Also, other potential sources of lead exposure, as firewood, a cooking glazed vessel, and soils from three houses were analyzed. Samples were analyzed with the energy dispersive X-ray technique. The average lead soil sample was 4940 µg/g, and the Pb average levels in firewood ashes was 207 ± 73 μg/g. The mean lead concentrations in edible parts of Zea mays, Capsicum annuum, and Avena sativa were 1551, 1474, and 1056 μg/g, respectively. Wild plants species showed very high lead concentration especially Acacia schaffneri, Buddleja scordioides, Tillandsia recurvata, Opuntia streptacantha and Amaranthus hybridus. The lead contamination path was through the emission of the metal-recycling plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ANZFA (2013) Australia New Zealand Food Standards Code. Standard 1.4.1 Contaminants and natural toxicants. http://www.foodstandards.gov.au/foodstandardscode/. Accessed 24 Jun 2013

  • Armienta MA, Ongley LK, Rodríguez R, Cruz O, Mango H, Villaseñor G (2008) Arsenic distribution in mesquite (Prosopis laevigata) and huizache (Acacia farnesiana) in the Zimapán mining area, México. Geochem Expl Environ Anal 8:191–197

    Article  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail—a further step in understanding metal hyperaccumulation. New Phytol 155:1–7

    Article  Google Scholar 

  • Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:171–178

    Google Scholar 

  • CEC (2001) Commission of the European Communities-Commission Regulation (EC), No. 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs’. Of J Eur Commun L77:01–13

    Google Scholar 

  • Chon HT, Kim KW, Kim JY (1995) Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environ Geochem Health 17:139–146

    Article  Google Scholar 

  • Colbourn P, Thornton I (1978) Lead pollution in agricultural soils. J Soil Sci 29:513–526

    Article  Google Scholar 

  • Dahl J, Obernberger I (2002) Technical and Biological database. Appendix B1, The market implication of integrated management for heavy metals flows for bioenergy use in the European Union. In: M. Johannesson M, et al. (eds). Kalmar University, Department of Biology and Environmental Science, Kalmar, Sweden, p 62

  • Díaz-Barriga F, Santos MA, Mejía JJ, Batres L, Yáñez L, Carrizales L, Vera E, del Razo LM, Cebrián ME (1993) Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico. Environ Res 62:242–250

    Article  Google Scholar 

  • Giordano S, Sorbo S, Adamo P, Basile A, Spagnuolo V, Castaldo-Cobianchi R (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol 170:1–14

    Article  Google Scholar 

  • Gulson BL, Mizon KJ, Davis JD, Palmer JM, Vimpani G (2004) Identification of sources of lead in children in a primary zinc–lead smelter environment. Environ Health Perspect 112:52–60

    Article  Google Scholar 

  • Guttormsen G, Singh BR, Jeng AS (1995) Cadmium concentration in the vegetables crops grown in sandy soils as affected by Cd levels in fertilizer and soil Ph. Fertil Res 41:27–32

    Article  Google Scholar 

  • Han WY, Zhao FJ, Shi YZ, Ma LF, Rua JY (2006) Scale and causes of lead contamination in Chinese tea. Environ Pollut 139:125–132

    Article  Google Scholar 

  • Hernberg S (2000) Lead poisoning in a historical perspective. Am J Ind Med 38:244–254

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123

    Article  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudate. J Biosci Bioeng 109:47–50

    Article  Google Scholar 

  • Liu J, Dong Y, Xu H, Wang D, Xu J (2007) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147:947–953

    Article  Google Scholar 

  • Lokeshwari H, Chandrappa GT (2006) Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Curr Sci 91:622–627

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    Article  Google Scholar 

  • Nefzaoui A, Salem HB (2002) Cacti: efficient tool for rangeland rehabilitation, drought mitigation and to combat desertification. Acta Hortic 581:295–315

    Article  Google Scholar 

  • Nunes KP, Munita CS, Vasconcellos MBA, Oliveira PMS, Croci CA, Faleiros FM (2009) Characterization of soil samples according to their metal content. J Radioanal Nucl Chem 281:359–363

    Article  Google Scholar 

  • OECD (1993) Risk reduction, monograph No. 1: LEAD—background and national experience with reducing risk. OECD Environment Directorate, Environmental Health and Safety Division, Paris

  • Önorm L (1990) Ausgewählte Richtwerte von anorganischen Schadelementen in landwirtschaftlich und gärtnerisch genutzten Böden, guideline, Austrian Institute for Standardization, Ed., Vienna, Austria

  • Reimann C, Ottesen RT, Andersson M, Arnoldussen A, Koller E, Englmaier P (2008) Element levels in birch and spruce wood ashes—green energy? Sci Total Environ 393:191–197

    Article  Google Scholar 

  • Rojas-López M, Santos-Burgoa C, Ríos C, Hernández-Avila M, Romieu I (1994) Use of lead-glazed ceramics is the main factor associated to high lead in blood levels in two Mexican rural communities. J Toxicol Environ Health Part A 42:45–52

    Article  Google Scholar 

  • Romieu I, Palazuelos E, Hernandez-Avila M, Ríos C, Muñoz I, Jimenez C, Cahero G (1994) Sources of lead exposure in Mexico City. Environ Health Perspect 102:384–389

    Article  Google Scholar 

  • Salas-Luevano MA, Manzanares-Acuña E, Letechipia-de Leon E, Vega-Carrillo HR (2009) Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian J Exp Sci 23:27–32

    Google Scholar 

  • Salas-Luevano MA, Manzanares-Acuña E, Letechipia-de Leon C, Hernandez-Davila VM, Vega-Carrillo HR (2011) Lead concentration in soil from an old mining town. J Radioanal Nucl Chem 289:135–139

    Article  Google Scholar 

  • Schröder W, Pesch R (2004) Spatial analysis and indicator building for metal accumulation in mosses. Environ Monit Assess 98:131–155

    Article  Google Scholar 

  • SEMARNAT (2002) Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Diario Oficial, Secretaría de Medio Ambiente y Recursos Naturales

  • Szalóki I, Braun M, Grieken RV (2000) Quantitative characterisation of the leaching of lead and other elements from glazed surfaces of historical ceramics. J Anal At Spectrom 15:843–850

    Article  Google Scholar 

  • UNAM (2009) Biblioteca Digital de la Medicina Tradicional Mexicana, Universidad Nacional Autónoma de México. http://www.medicinatradicionalmexicana.unam.mx/index.php. Accessed 17 Apr 2014

  • Valdés PF, Cabrera MVM (1999) La contaminación por metales pesados en Torreón, Coahuila, Mexico. Texas Center for Policy Studies. CILADHAC (Ciudadanía Lagunera por los Derechos Humanos, A.C.). En Defensa del Ambiente, A.C

  • Vibrans H (2014) Malezas de México. http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm. Accessed 17 Apr 2014

  • Vigueras GAL, Portillo L (2001) Uses of Opuntia species and the potential impact of Cactoblastis cactorum (Lepidoptera: Pyralidae) in Mexico. Fla Entomol 84:493–498

    Article  Google Scholar 

  • WHO (2004). Codex Committee on food Additives and Contaminants, World Health Organization, Rotterdam, The Netherlands. http://www.codexalimentarius.org/. Accessed 22 May 2013

  • WHO (2005) Quality control methods for medicinal plant materials—revised draft update, World Health Organization. Working document QAS/05.131/Rev.1

  • Zhuang P, Zou B, Li Y, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Salas-Luevano.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Luevano, M.A., Vega-Carrillo, H.R. Environmental impact in a rural community due to a lead recycling plant in Zacatecas, Mexico. Environ Earth Sci 75, 408 (2016). https://doi.org/10.1007/s12665-016-5247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5247-8

Keywords

Navigation