Skip to main content
Log in

Environmetric techniques in water quality assessment and monitoring: a case study

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents the interpretation of voluminous and complex dataset of Vishav stream, using different environmetric techniques, acquired during 1 year monitoring program of 21 parameters at five different sites. General linear regression model depicted better and higher positive and negative relationship among various analyzed water quality parameters (p < 0.0001), indicating that the water temperature, dissolved oxygen, conductivity, TDS, NO3-N, and ortho-phosphorus (ortho-P) appears to be important parameters to predict overall water quality. Hierarchical cluster analysis classified similar water quality sites into two significant clusters (Cluster II and Cluster I). Cluster II (sites I and II) is characterized by excellent water quality while cluster I (sites III, IV and V) is considered to be of moderately poor water quality, thereby reflecting the different physico-chemical characteristics and quality status. Principal component analysis has allowed identification of a reduced number of mean three varifactors (VF1, VF2 and VF3), pointing out 88.3 % of both spatio-temporal changes. Factor analysis showed that the first factor (VF1) explained 63.9 % of the total variance comprising of WT, discharge, free carbon dioxide, NO3-N and total phosphorus and strong negative loading on pH, DO, total hardness, calcium hardness and magnesium hardness. VF2, explaining 14.13 % of total variance, has a strong positive loading on ortho-P and sulphate. VF3, explaining the lowest variance (10.12 %), has strong positive loading on ammonical-nitrogen and dissolved silica. Thus, the present study demonstrates the importance of environmetric techniques for reliable characterization and evaluation of surface water quality, over a short period for effective management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Wahab SA, Bakheit CS, Al-Alawi SM (2005) Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ Modell Softw 20(10):1263–1271. doi:10.1016/j.envsoft.2004.09.001

    Article  Google Scholar 

  • Agostinho LCL, Nascimento L, Cavalcanti BF (2012) Water hardness removal for industrial use: application of the electrolysis process. Open Access Sci Rep 1(9):460–465. doi:10.4172/scientificreports.460

    Google Scholar 

  • American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater. 21st Edition. Washington, USA

  • Boyacioglu H (2008) Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin, Turkey. Environ Geol 54(2):275–282. doi:10.1007/s00254-007-0815-6

    Article  Google Scholar 

  • Boyd CE, Tucker CS (1998) Pond aquaculture water quality management. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Brumelis G, Lapina L, Nikodemus O, Tabors G (2000) Use of an artificial model of monitoring data to aid interpretation of principal component analysis. Environ Modell Softw 15(8):755–763. doi:10.1016/S1364-8152(00)00060-8

    Article  Google Scholar 

  • Carpenter S, Caraco N, Correll R, Howarth A, Sharply Smith V (1998) Nonpoint source pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO,2

  • Crisp T (2000) Trout and salmon: ecology, conservation and rehabilitation. Fishing new books. Blackwell Science Limited, Oxford

    Book  Google Scholar 

  • Helena B, Pardo R, Vega ME, Barrado E, Fernandez JM, Fernandez J (2000) Temporal factor analysis: What it is and how to do it. Evolution of groundwater composition in an alluvial Quantitative Applications in the Social Sciences aquifer (Pisuerga River, Spain) by principle component analysis. Sage University Press, Newbury Park. Water Res 34(3):807–816. doi:10.1016/S0043-1354(99)00225-0

    Article  Google Scholar 

  • Hickman RE, Gray BJ (2010) Trends in the quality of water in New Jersey streams, water years 1998–2007: US Geological Survey Scientific Investigations. Report 2010–5088:70

    Google Scholar 

  • Isah A, Abdullahi U, Ndamitso MM (2013) Application of multivariate methods for assessment of variations in rivers/streams water quality in Niger State, Nigeria. Am J Theor Appl Stat 2(6):176–183. doi:10.11648/j.ajtas.20130206.14

    Article  Google Scholar 

  • Ismail AH, Abed BSH, Abdul-Qader S (2014) Application of Multivariate Statistical Techniques in the surface water quality Assessment of Tigris River at Baghdad stretch, Iraq. J Babylon Univ/Eng Sci 2(22):450–462

    Google Scholar 

  • Jayaramana PR, Devi TG, Nayar TV (2003) Water quality studies on Karamanariver, Thiruvananthapuram District South Kerela, India. Pollut Res 22(1):89–100

    Google Scholar 

  • Jianqin M, Jingjing G, Xiaojie L (2010) Water quality evaluation model based on principal component analysis and information entropy: application in Jinshui River. J Res Ecol 1(3):249–252. doi:10.3969/j.issn.1674-764x.2010.03.008

    Google Scholar 

  • Juhair H, Zain SM, Yousuf MK, Hanidza TIT, Armi ASM, Toriman ME, Mokhtar M (2011) Spatial water quality assessment of Langat River Basin (Malaysia) using environmental techniques. Environ Monit Assess 173(1–4):625–641. doi:10.1007/s10661-010-1411-x

    Article  Google Scholar 

  • Jyoti MK, Akhtar R (2007) Some limnological investigations of Sarkoot pond located in Kishtwar district Doda, JandK State. J Res Dev 7:27–34

    Google Scholar 

  • Kannel PR, Lee S, Kanel SR, Khan SP (2007) Chemometric application in classification and assessment of monitoring locations of an urban river system. Anal Chim Acta 582(2):390–399. doi:10.1016/j.aca.2006.09.006

    Article  Google Scholar 

  • Kim RK, Lee J, Chang HW (2003) Characteristics of organic matter as indicators of pollution from small-scale livestock and nitrate contamination of shallow groundwater in an agricultural area. Hydrol Process 17(12):2485–2496. doi:10.1002/hyp.1256

    Article  Google Scholar 

  • Kim J, Kim R, Lee J, Cheong T, Yum B, Chang H (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol Process 19(6):1261–1276. doi:10.1002/hyp.5565

    Article  Google Scholar 

  • Liang YZ, Yu RQ (2000) Chemometrics. Central South University Press, Changsha, China

    Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 31(3):77–89. doi:10.1016/S0048-9697(02)00683-6

    Article  Google Scholar 

  • Love D, Hallbauer D, Amos A, Hranova R (2004) Factor analysis as a tool in groundwater quality management: two southern African case studies. Phys Chem Earth 29(15):1135–1143. doi:10.1016/j.pce.2004.09.027

    Article  Google Scholar 

  • McKenna JE Jr (2003) An enhanced cluster analysis program with boot strap significance testing for ecological community analysis. Environ Model Softw 18(3):205–220. doi:10.1016/S1364-8152(02)00094-4

    Article  Google Scholar 

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucata Aquifer in Sao Paulo state, Brazil. J Hydrol 250(1–4):78–97. doi:10.1016/S0022-1694(01)00423-1

    Article  Google Scholar 

  • Nanda AM, Hamid A, Ahmad P, Kanth TA (2014) Evaluation of landuse/landcover dynamics in Vishav watershed of Kashmir Valley (JandK). Natl Geogr J India 60(4):381–390

    Google Scholar 

  • Nyamangara J, Jeke N, Rurinda J (2013) Long-term nitrate and phosphate loading of river water in the Upper Manyame Catchment, Zimbabwe. Water SA 39(5):637–642. doi:10.4314/wsa.v39i5.7

    Article  Google Scholar 

  • Oketola AA, Adekolurejo SM, Osibanjo O (2013) Water quality assessment of river Ogun using multivariate statistical techniques. J Environ Prot 4(5):466–479. doi:10.4236/jep.2013.45055

    Article  Google Scholar 

  • Olajire AA, Imeokparia FE (2001) Water quality assessment of Osun River: Studies on inorganic nutrients. Environ Monit Assess 69(1):17–28. doi:10.1023/A:1010796410829

    Article  Google Scholar 

  • Qadir A, Malik RN, Husain SZ (2007) Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environ Monit Assess 140(1–3):43–59. doi:10.1007/s1066100798464

    Google Scholar 

  • Ragno G, De Luca M, Ioele G (2007) An application of cluster analysis and multivariate classification methods to spring water monitoring data. Microchem J 87(2):119–127. doi:10.1016/j.microc.2007.06.003

    Article  Google Scholar 

  • Raza M, Ahmed A, Mohammad A (1978) The valley of Kashmir—a geographical interpretation. Carolina Academic Press, New Delhi

    Google Scholar 

  • Razmkhah H, Abrishamchi A, Torkian A (2010) Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran). J Environ Manag 91(4):852–860. doi:10.1016/j.jenvman.2009.11.001

    Article  Google Scholar 

  • Reghunath R, Murthy T, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36(10):2437–2442. doi:10.1016/S0043-1354(01)00490-0

    Article  Google Scholar 

  • Sarbu C, Pop HF (2005) Principal component analysis versus fuzzy principal component analysis. A case study: the quality of Danube water(1985–1996). Talanta 65(5):1215–1220. doi:10.1016/j.talanta.2004.08.047

    Article  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22(4):464–475. doi:10.1016/j.envsoft.2006.02.001

    Article  Google Scholar 

  • Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sfoniou M, Kouimtzis Th (2003) Assessment of the surface water quality in Northern Greece. Water Res 37(17):4119–4124. doi:10.1016/S0043-1354(03)00398-1

    Article  Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Res 38(18):3980–3992. doi:10.1016/j.watres.2004.06.011

    Article  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: a case study. Anal Chim Acta 538(1–2):355–374. doi:10.1016/j.aca.2005.02.006

    Article  Google Scholar 

  • Solanki VR, Hussain MM, Raja SS (2010) Water quality assessment of Lake Pandu Bodhan, Andhra Pradesh State, India. Environ Monit Assess 163(1–4):411–419. doi:10.1007/s10661-009-0844-6

    Article  Google Scholar 

  • Sundaray SK, Panda UC, Nayak BB, Bhatta D (2006) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of the Mahanadi river–estuarine system (India)—a case study. Environ Geochem Health 28(4):317–330. doi:10.1007/s10653-005-9001-5

    Article  Google Scholar 

  • Thompson R, Lake P (2010) Reconciling theory and practice: the role of stream ecology. River Res Appl 26(1):5–14. doi:10.1002/rra.1284

    Article  Google Scholar 

  • Uzarski DG, Burton TM, Cooper MJ, Ingram JW, Timmermans S (2005) Fish habitat use within and across wetland classes in coastal wetlands of the five Great Lakes: development of a fish based index of biotic integrity. J Great Lakes Res 31(1):171–187. doi:10.1016/S0380-1330(05)70297-5

    Article  Google Scholar 

  • Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592. doi:10.1016/S0043-1354(98)00138-9

    Article  Google Scholar 

  • Vie JC, Hilton-Taylor C, Stuart SN (2009) Wildlife in a changing world—an analysis of the 2008, IUCN red list of threatened species. IUCN, Gland

    Google Scholar 

  • Wadia DN (1975) Geology of India. Tata McGraw Hill, New Delhi

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego, p 1006

    Google Scholar 

  • Wetzel RG, Likens G (2000) Limnological analysis, 3rd edn. Springer Science and Business Media, New York

    Book  Google Scholar 

  • Wu ML, Wang YS, Sun CC, Wang H, Dong JD, Yin JP, Han SH (2010) Identification of coastal water quality by statistical analysis methods in Daya Bay, South China Sea. Mar Pollut Bull 60(6):852–860. doi:10.1016/j.marpolbul.2010.01.007

    Article  Google Scholar 

  • Wunderlin DA, Diaz MP, Ame MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: suquia river basin (Cordoba, Argentina). Water Res 35(12):2881–2894. doi:10.1016/S0043-1354(00)00592-3

    Article  Google Scholar 

  • Yang YH, Zhou F, Guo HC, Sheng H, Liu H, Dao X, He CJ (2010) Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ Monit Assess 170(1–4):407–416. doi:10.1007/s10661-009-1242-9

    Article  Google Scholar 

  • Yilmaz E, Koc C (2014) Physically and chemically evaluation for the water quality criteria in a farm on Akcay. J Water Res Protect 6(2):63–67. doi:10.4236/jwarp.2014.62010

    Article  Google Scholar 

  • Zhao Y, Xia XH, Yang ZF, Wang F (2012) Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Proc Environ Sci 8:1240–1253. doi:10.1016/j.proenv.2012.01.115

    Google Scholar 

  • Zhou F, Liu Y, Guo H (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in Northwestern New Territories, Hong Kong. Environ Monit Assess 132(1):1–13. doi:10.1007/s10661-006-9497-x

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude and sincere thanks to the Head Department of Environmental Science, University of Kashmir, Srinagar, for providing the needed facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aadil Hamid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This work is based on corresponding authors PhD work. Second author has helped in statistical analysis. Third and Fourth authors have helped in manuscript preparation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, A., Bhat, S.A., Bhat, S.U. et al. Environmetric techniques in water quality assessment and monitoring: a case study. Environ Earth Sci 75, 321 (2016). https://doi.org/10.1007/s12665-015-5139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5139-3

Keywords

Navigation