Skip to main content

Advertisement

Log in

Synopsis of geo-environmental hazards in Hail region, Saudi Arabia using remote sensing

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Hail desert in Saudi Arabia is subjected to a range of geo-environmental hazards due to its intrinsic physiographic and geologic nature. These hazards include: sand drift, flash floods, rock falls, problem soils, potential hazards from intra-plate lava flows of dormant volcanoes (harrat), and dust storms. Remote sensing and field investigation were used to identify and quantify the magnitude of these hazards. Hail is a growing urban and agricultural development region; however, some infrastructure have been constructed in vulnerable locations to geo-environmental hazards. Development plans should consider such hazards when executing sprawl and extension of public services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al Saud M (2010) Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. J Water Resour Prot 2:839–847

    Article  Google Scholar 

  • Alghamdi AA, Al-Kahtani NS (2005) Sand control measures and sand drift fences. J Perform Constr Facil 19(4):295–299

    Article  Google Scholar 

  • Alharbi T, Sultan M, Sefry S, ElKadiri R, Ahmed M, Chase R, Milewski A, Abu Abdullah M (2014) An assessment of landslide susceptibility in the Faifa area, Saudi Arabia, using remote sensing and GIS techniques. Nat Hazards Earth Syst Sci 14:1553–1564

    Article  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2013) Soft path water management in dry and arid regions of the Arabian Peninsula by rainwater harvesting. Am J Environ Sci 9:156–163

    Article  Google Scholar 

  • Balba A (1995) Management of problem soils in arid ecosystems. CRC Press, Boca Raton, p 250

    Google Scholar 

  • Bayramov E, Buchroithner M (2015) Detection of oil spill frequency and leak sources around the oil rocks settlement, Chilov and Pirallahi islands in the Caspian Sea using multi-temporal envisat radar satellite images 2009–2010. Environ Earth Sci 73:3611–3621

    Article  Google Scholar 

  • Bell FG (1999) Geological hazards—Their assessment, avoidance and mitigation. Routledge, NY, p 648

    Book  Google Scholar 

  • Breed CS, Grow T (1979) Morphology and distribution of dunes in sand seas observed by remote sensing. In: McKee ED (ed) United States geological survey professional paper: vol 1052. A study of global sand seas, Washington DC, pp 253–304

  • Camp VE, Roobol MJ (1989) The Arabian continental alkali basalt province: part I, evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geol Soc Am Bull 101:71–95

    Article  Google Scholar 

  • Chhabra R (1996) Soil salinity and water quality. Balkema Pub, VT

    Google Scholar 

  • Dabbagh A, Al-Hinai K, Khan M (1997) Detection of sand-covered geologic features in the Arabian Peninsula Using SIR-C/X-SAR data. Rem Sens Environ 59:375–382

    Article  Google Scholar 

  • Edgell HS (2006) Arabian deserts—nature, origin, and evolution. Springer, Dordrecht 592 pp

    Google Scholar 

  • El Difrawy MA, Runge MG, Moufti MR, Cronin SJ, Bebbington M (2013) A first hazard analysis of the Quaternary harrat Al-Madinah volcanic field, Saudi Arabia. J Volcanol Geotherm Res 267:39–46

    Article  Google Scholar 

  • El-ossta E, Qahwaji R, Ipson S (2013) Detection of dust storms using MODIS reflective and emissive bands. IEEE J Sel Top Appl Earth Obs Remote Sens 6:2480–2485

    Article  Google Scholar 

  • EM-DAT (2014) The OFDA/CRED international disaster database, Université catholique de Louvain, Brussels. www.emdat.be

  • Ernst G, Kervyn M, Teeuw R (2008) Advances in the remote sensing of volcanic activity and hazards, with special consideration to applications in developing countries. Int J Rem Sens 29:6687–6723

    Article  Google Scholar 

  • Ekren EB, Vaslet, D, Berthiaux A. Le Strat P, Fourniguet J (1987) Geologic map of the Ha’il Quadrangle, Sheet 27E, Kingdom of Saudi Arabia, Deputy Ministry for Mineral Resources, Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia, Scale 1:250,000

  • Fryberger SG, Ahlbrandt TS (1979) Mechanisms for the formation of aeolian sand seas. Z Geomorph 23:440–460

    Google Scholar 

  • Fryberger SG, Al-Sari A, Clishman TJ, Rizvi SA, Al-Hinai KG (1984) Wind sedimentation in the Jafurah sand sea, Saudi Arabia. Sedimentology 31:413–431

    Article  Google Scholar 

  • Goudie A, Middleton N (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204

    Article  Google Scholar 

  • Hang L, Zhang Z, Zhang Q, Wan X (2015) Desertification assessments in the Hexi corridor of northern China’s Gansu province by remote sensing. Nat Hazards 75:2715–2731

    Article  Google Scholar 

  • Hereher M (2014) Assessment of sand drift potential along the Nile valley and Delta using climatic and satellite data. Appl Geogr 55:37–39

    Article  Google Scholar 

  • Hereher M, Al-Shammari A, Abd Allah Sh (2012) Land cover classification of Hail, KSA using remote sensing. Int J Geosci 3:349–356

    Article  Google Scholar 

  • Hussein M, Bazuhair A, Ageeb A (1992) Hydrogeology of the Saq formation east of Hail, Northern Saudi Arabia. Quat J Eng Geol 25:57–64

    Article  Google Scholar 

  • Kassas M (1987) Drought and desertification. Land Use Policy 4:389–400

    Article  Google Scholar 

  • Keller E (2012) Introduction to environmental geology, 5th edn. Prentice Hall, Upper Saddle 801 pp

    Google Scholar 

  • Lancaster N (1995) Geomorphology of desert dunes. In: Physical environment series, Routledge, New York, p 290

  • Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 380:416–419

    Article  Google Scholar 

  • McGuire B, Mason I, Kilburn C (2002) Natural hazards and environmental change. Oxford University Press, New York, p 187

    Google Scholar 

  • Pallister J (1986) Reconnassance geology of the harrat Al Hutaymah quadrangle, sheet 26/42 A. Kingdom of Saudi Arabia, Saudi Arabian Deputy Ministry for Mineral Resources, Jeddah, p 77

    Google Scholar 

  • Pallister JS, McCausland WA, Jónsson S, Lu Z, Zahran HM, El Hadidy S, Aburukbah A, Stewart I, Lundgren PR, White RA, Moufti MR (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat Geosci 3:705–712

    Article  Google Scholar 

  • Reichard J (2011) Environmental geology. McGraw-Hill, NY, p 593

    Google Scholar 

  • Roobol M, Shouman S, Al Solami A (1985) Earth tremors, ground fractures, and damage to buildings at Tabah (27/42C). Saudi Arabian Deputy Ministry for Mineral Resources Technical Record DGMR-TR-05-4

  • Shahraiyni HT, Karimi Kh, Nokhandan MH, Moghadas NH (2015) Monitoring of dust storm and estimation of aerosol concentration in the Middle East using remotely sensed images. Arab J Geosci 2015:2095–2110

    Article  Google Scholar 

  • Shang J, Wilson JP (2009) Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Nat Hazards 48:41–57

    Article  Google Scholar 

  • Sharaf M, Hussein M (1996) Groundwater quality in the Saq aquifer, Saudi Arabia. Hydrol Sci 4:683–699

    Article  Google Scholar 

  • United Nations Environment Program (UNEP) (1991) Status of desertification and implementation of the United Nations plans of action to combat desertification. UNEP, Nairobi

    Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural Hazard, 3, UNESCO, Paris, pp 61

  • Vincent P (2008) Saudi Arabia: an environmental overview. Taylor & Francis Group, London 309 pp

    Book  Google Scholar 

  • Williamson SN, Hik DS, Gamon JA, Kavanaugh JL, Flowers GE (2014) Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-arctic Alpine environment. Remote Sens 2014:946–963

    Article  Google Scholar 

  • Wilson IG (1983) Ergs. Sediment Geol 10:77–106

    Article  Google Scholar 

  • Youssef AM, Maerz NH (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70:3115–3130

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Sabtan AA, El-Harbi HM (2012) Coupling of remote sensing data aided with field investigations for geological hazards assessment in Jazan area, Kingdom of Saudi Arabia. Environ Earth Sci 65:119–130

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges and thanks three anonymous reviewers for their deep revisions and valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed E. Hereher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hereher, M.E. Synopsis of geo-environmental hazards in Hail region, Saudi Arabia using remote sensing. Environ Earth Sci 75, 233 (2016). https://doi.org/10.1007/s12665-015-5024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5024-0

Keywords

Navigation