Skip to main content

Advertisement

Log in

Hydrochemical response of a fractured carbonate aquifer to stress variations: application to leakage detection of the Vouglans arch dam lake (Jura, France)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Leakage detection and the prediction of the behavior of fractured rocks subjected to variations in hydrostatic pressure are important issues in hydropower engineering. Some large water reservoirs are constructed in karstic carbonate areas. In order to understand underground circulation in the limestone/dolomite foundation of the Vouglans dam (Jura, France), groundwater chemistry analysis, according to geological conditions, is used. Statistical analyses (PCA and DFA) are carried out: (1) to accurately characterize the contrast in chemical composition resulting from the interaction between surface and groundwater in a poorly contrasted environment, due to the shared carbonated context, and (2) to reassign individuals into homogeneous groups with respect to the variables studied. PHREEQC is used to determine the potential for the precipitation of secondary minerals from the water chemistry mainly in order to determine the geochemical control of clogging. Three types of hydrodynamic behavior were identified in the sector. The origin and transfer time of inflows vary with respect to seasons. The area of influence of the rapid transit of the lake water varies predominantly in response to changes in the lake water level. The hydrostatic pressure of the water column influences the opening and closing of cracks at the bottom of the dam. Drains intercepting an upstream fissure are highlighted by hydrochemical measurements. Inflows are oversaturated with respect to calcite and are thus likely to precipitate this mineral. Zones with a strong clogging capacity correspond to the zones with slow transit groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakalowic M (1979) Contribution de la géochimie des eaux à la connaissance de l’aquifère karstique et de la karstification. Thèse, Université de Paris VI

  • Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063–2081. doi:10.1016/j.apgeochem.2005.07.008

    Article  Google Scholar 

  • Batiot C, Emblanch C, Blavoux B (2003) Carbone organique total (COT) et magnésium (Mg2+): deux traceurs complémentaires du temps de séjour dans l’aquifère karstique. CR Geosci 335:205–214. doi:10.1016/S1631-0713(03)00027-0

    Article  Google Scholar 

  • Bonacci O, Roje-Bonacci T (2008) Water losses from the Ričice reservoir built in the Dinaric karst. Eng Geol 99:121–127

    Article  Google Scholar 

  • Brouste L, Marlin C, Dever L (1997) Geochemistry and residence time estimation of groundwater from the upper aquifer of the Chihuahua desert (Comarca Lagunera, Northern Mexico). Appl Geochem 12:775–786. doi:10.1016/S0883-2927(97)00034-6

    Article  Google Scholar 

  • Charlier JB, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64. doi:10.1016/j.jhydrol.2012.06.043

    Article  Google Scholar 

  • Chaudhuri S, Clauer N, Semhi K (2007) Plant decay as a major control of river dissolved potassium: a first estimate. Chem Geol 243:178–190

    Article  Google Scholar 

  • Contreras IA, Hernández SH (2010) Techniques for prevention and detection of leakage in dams and reservoirs. http://ussdams.com/proceedings/2010Proc/785-814.pdf

  • De Waele J (2008) Interaction between a dam site and karst springs: the case of Supramonte (Central-East Sardinia, Italia). Eng Geol 99:128–137

    Article  Google Scholar 

  • Dubey CS, Venkatachalam K, Ratnam M, Shekhar P (2004) Causes of seepage water in drainage and grouting galleries of the Pandoh Dam, Central Himalaya. Bull Eng Geol Environ 63:19–23

    Article  Google Scholar 

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752. doi:10.1016/S0883-2927(99)00079-7

    Article  Google Scholar 

  • El Naqa A, Al Kuisi M (2004) Hydrogeochemical modeling of the water seepages through Tannur Dam, southern Jordan. Environ Geol 45(8):1087–1100

    Article  Google Scholar 

  • Epting J, Huggenberger P, Glur L (2009) Integrated investigations of karst phenomena in urban environments. Eng Geol 109:273–289. doi:10.1016/j.enggeo.2009.08.013

    Article  Google Scholar 

  • Gabrovsek F, Romanov D, Dreybrodt W (2004) Early karstification in a dual-fracture aquifer: the role of exchange flow between prominent fractures and a dense net of fissures. J Hydrol 299:45–66. doi:10.1016/j.jhydrol.2004.02.005

    Article  Google Scholar 

  • Griffioen J (2001) Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater. J Hydrol 254:244–254

    Article  Google Scholar 

  • Guglielmi Y (1999) Apport de la mesure des couplages hydromécaniques à la connaissance hydrogéologique des réservoirs fissurés: approche sur site expérimental. Mémoire HDR, Université de Franche-Comté, Besançon

    Google Scholar 

  • Gutiérrez F, Mozafari M, Carbonel D, Gómez R, Raeisi E (2015) Leakage problems in dams built on evaporites. The case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution. Eng Geol 185:139–154

    Article  Google Scholar 

  • Hiller T, Kaufmann G, Romanov D (2011) Karstification beneath dam-sites: from conceptual models to realistic scenarios. J Hydrol 398:202–211. doi:10.1016/j.jhydrol.2010.12.014

    Article  Google Scholar 

  • Hilley GE, Chamberlain CP, Moon S, Porder S, Willett SD (2010) Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth Planet Sci Lett 293:191–199. doi:10.1016/j.epsl.2010.01.008

    Article  Google Scholar 

  • Käss W (1998) Tracing techniques in hydrogeology. A.A.Balkema, Amsterdam

    Google Scholar 

  • Kendall C, Doctor DH (2004) Stable isotope applications in Hydrologic Studies. In: Drever JI (ed) Surface and ground water, weathering, and soils: treatise on geochemistry, vol. 5, 11: pp 319–364

  • Kendall C, McDonnell JJ (eds) (1998) Isotope tracers in catchment hydrology. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Kroening DE, Snipes DS, Brame SE, Hodges RA, Price V, Temples TJ (1996) The rehabilitation of monitoring wells clogged by calcite precipitation and drilling mud. Ground Water Monit Remediat 16(2):114–123

    Article  Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res Solid Earth (1978–2012) 89:4009–4025

    Article  Google Scholar 

  • Lee YJ, Morse JW (1999) Calcite precipitation in synthetic veins: implications for the time and fluid volume necessary for vein filling. Chem Geol 156:151–170. doi:10.1016/S0009-2541(98)00183-1

    Article  Google Scholar 

  • Lee YJ, Morse JW, Wiltschko DV (1996) An experimentally verified model for calcite precipitation in veins. Chem Geol 130:203–215. doi:10.1016/0009-2541(96)00008-3

    Article  Google Scholar 

  • Lee JY, Choi YK, Kim HS, Yun ST (2005) Hydrologic characteristics of a large rockfill dam: implications for water leakage. Eng Geol 80:43–59

    Article  Google Scholar 

  • Li XD, Liu CQ, Harue M, Li SL, Liu XL (2010) The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: a case study of the Shuicheng Basin, SW China. Appl Geochem 25:1924–1936. doi:10.1016/j.apgeochem.2010.10.008

    Article  Google Scholar 

  • Lin CP, Hung YC, Yu ZH, Wu PL (2013) Investigation of abnormal seepages in an earth dam using resistivity tomography. J GeoEngin 8(2):61–70

    Google Scholar 

  • Mays DC, Hunt JR (2007) Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Environ Sci Technol 41(16):5666–5671

    Article  Google Scholar 

  • Milanovic P (2002) The environmental impacts of human activities and engineering constructions in karst regions. Episodes 25(1):13–21

    Google Scholar 

  • Milanovic P (2004) Water resources engineering in Karst. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mortimer L, Aydin A, Simmons CT, Love AJ (2011) Is in situ stress important to groundwater flow in shallow fractured rock aquifers? J Hydrol 399:185–200. doi:10.1016/j.jhydrol.2010.12.034

    Article  Google Scholar 

  • Mudry J (1991) L’analyse discriminante, un puissant moyen de validation des hypothèses hydrogéologiques. Revue des Sciences de l’Eau, (Québec, Paris) 4:19–37

    Article  Google Scholar 

  • Mudry J, Andreo B, Charmoille A, Liñan C, Carrasco F (2008) Some applications of geochemical and isotopic techniques to hydrogeology of the caves after research in two sites (Nerja cave-S Spain, and Fourbanne spring system-French Jura). Int J Speleo 37(1):67–74

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2), a computer program for speciation batch reaction, one dimensional transport and inverse geochemical calculations. Water Resour Res Investig Rep 99–4259:321

    Google Scholar 

  • Peng TR, Wang CH (2008) Identification of sources and causes of leakage on a zoned earth dam in northern Taiwan: hydrological and isotopic evidence. Appl Geochem 23(8):2438–2451

    Article  Google Scholar 

  • Plata Bedmar A, Araguas Araguas L (2002) Detection and prevention of leaks from dams. A.A.Balkema Publishers, Amsterdam

    Google Scholar 

  • Romanov D, Gabrovšek F, Dreybrodt W (2003) Dam sites in soluble rocks: a model of increasing leakage by dissolutional widening of fractures beneath a dam. Eng Geol 70:17–35. doi:10.1016/S0013-7952(03)00073-5

    Article  Google Scholar 

  • Turkmen S, Özgüler E, Taga H, Karaogullarindan T (2002) Seepage problems in the karstic limestone foundation of the Kalecik Dam (south Turkey). Eng Geol 63:247–257. doi:10.1016/S1367-9120(99)00026-7

    Article  Google Scholar 

  • Uromeihy A (2000) The Lar Dam; an example of infrastructural development in a geologically active karstic region. J Asian Earth Sci 18:25–33

    Article  Google Scholar 

  • Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246:223–234. doi:10.1016/S0022-1694(01)00376-6

    Article  Google Scholar 

  • Xu R, Yan F (2004) Karst geology and engineering treatment in the Geheyan Project on the Qingjiang River, China. Engin Geol Engin Geol China 76:155–164. doi:10.1016/j.enggeo.2004.06.012

    Google Scholar 

  • Zengguang X, Yanqing Wu, Jun W, Xiaoqing Z (2011) A model of seepage field in the tailings dam considering the chemical clogging process. Adv Eng Softw 42(7):426–434

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by EDF. We gratefully acknowledge G. Castanier (Service Géologie Géotechnique DIN/CEIDRE—Département TEGG Aix en Provence Cedex). We also gratefully acknowledge the two anonymous reviewers for their comments that helped clarify the text of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Bertrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, C., Guglielmi, Y., Denimal, S. et al. Hydrochemical response of a fractured carbonate aquifer to stress variations: application to leakage detection of the Vouglans arch dam lake (Jura, France). Environ Earth Sci 74, 7671–7683 (2015). https://doi.org/10.1007/s12665-015-4671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4671-5

Keywords

Navigation