Skip to main content
Log in

The hydrogeology of high-mountain carbonate areas: an example of some Alpine systems in southern Piedmont (Italy)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The hydrogeological characteristics of some springs supplied by high-mountain carbonate rock aquifers, located in the south of Piedmont, in Italy, are presented in this work. The aquifers have different geological-structural conditions, including both deep and superficial karstification. Their catchment areas are located in a typical Alpine context at a high altitude of about 2000 m. These aquifers are ideal representations of the different hydrogeological situations that can be encountered in the high-altitude carbonate aquifers of the Mediterranean basin. It is first shown how the high-altitude zones present typical situations, in particular related to the climate, which control the infiltration processes to a great extent. Snowfall accumulates on the ground from November to April, often reaching remarkable thicknesses. The snow usually begins to melt in spring and continues to feed the aquifer for several months. This type of recharge is characterized by continuous daily variations caused by the typical thermal excursions. The hourly values are somewhat modest, but snowmelt lasts for a long time, beginning in the lower sectors and ending, after various months, in the higher areas. Abundant rainfall also occurs in the same period, and this contributes further to the aquifer supply. In the summer period, there is very little rainfall, but frequent storms. In autumn, abundant rainfall occurs and there are therefore short but relevant recharge events. It has been shown how the trend of the yearly flow of the high mountain springs is influenced to a great extent by the snowmelt processes and autumn rainfall. It has also been shown, by means of the annual hydrographs of the flow and the electric conductivity of the spring water, how the different examined aquifers are characterized by very different measured value trends, according to the characteristics of the aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amuroso A, Crescentini L, Petitta M, Tallini M (2013) Parsimonious recharge/discharge modeling in carbonate fractured aquifers: the groundwater flow in the Gran Sasso aquifer (Central Italy). J Hydrol 476:136–146

    Article  Google Scholar 

  • Atkinson TC (1997) Diffusive flow and conduit flow in limestone terrain in Mendip Hills, Somerset (great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Audra P, Mocochain L, Camus H, Gilli E, Clauzon G, Bigot JY (2004) The effect of the Messinian deep stage on karst development around the Mediterranean Sea. Examples from Southern France. Geodinamica Acta 17:389–400

    Article  Google Scholar 

  • Bakalowicz M (1976) Geochimie des eaux karstiques. Une methode d’etude de l’organisation des ecoulements souterrains. In: Annales Scientifiques Université de Besançon, vol 25, pp 49–58

  • Bakalowicz M (1977) Etude du degree d’organisation des ecoulements souterrain dans les aquiferes carbonatés par une methode hydrogeochimique nouvelle. CR Acad Sci Paris 284:2463–2466

    Google Scholar 

  • Bakalowicz M, Mangin A (1980) L’aquifére karstique. Sa definition, ses charactéristiques et son identification. Mem Soc Geol France 11:71–79

    Google Scholar 

  • Banzato C, De Waele J, Fiorucci A, Vigna B (2011) Study of springs and karst aquifers by monitoring and geochemical analysis. In: Proceedings of H2karst—hydrology and hydrogeology of the karst, Besancon (Francia), pp 45–48

  • Benischke R, Zojer H, Fritz P, Maloszewski P, Stichler W (1988) Environmental and artificial tracer studies in an alpine karst massif (Austria). In: Proceedings of Karst hydrogeology and karst environment protection, Guilin (China), pp 939-947

  • Boegli A (1980) Karst hydrology and physical speleology. Springer, Heidelberg

    Book  Google Scholar 

  • Boni C, Baldoni T, Banzato F, Cascone D, Petitta M (2010) Hydrogeological study for identification, characterization and management of groundwater resources in the Sibillini Mountains National Park. Italian J Eng Geol Environ 2:21–39

    Google Scholar 

  • Borsato A (2001) Characterisation of a high-altitude alpine karst aquifer by means of temperature, conductivity and discarge monitoring (Centonia spring, Brenta Dolomites, N-Italy). In: Proceedings of 7th conference on limestone hydrology and fissured media, Besancon, Francia, pp 51–54

  • Braun LN, Lang H (1986) Simulation of snowmelt runoff in lowland and lower alpine regions of Switzerland. In: Morris EM (ed) Proceedings of modelling snowmell-induced processes, IAHS 155, pp 125–140

  • Chauve P, Mania J, Moindrot D (1990) Modalités de fonte de neige en moyenne montagne et alimentation du karst sous-jacent. Hydrogeology in mountainous regions. IAHS 193:107–116

    Google Scholar 

  • Cichocki G, Zojer Ht (2006) Vulnerability and risk analysis with “VURAAS” in high alpine Karst Regions—Testsite Nassfeld, Carnian Alps. In: Proceedings of all abaut karst, water, Vienna Waterworks, City of Vienna ERDF, pp 30–38

  • Civita M, Olivero G, Pavia R, Vigna B (1990) Hydrodynamic and chemical features of an high altitude karstic system in the Maritime Alps (Italy). In: Proceedings of water resources in mountainous regions. Memoires, Vol XXII, Part 1, Lausanne, pp 444–451

  • Civita M, Manzone L, Vigna B (1992) Idrogeologia degli acquiferi carbonatici di alta quota: due sistemi a confronto. In: Proceedings of “Alpine Caves: alpine karst systems and their environmental context” Asiago, pp 177–188

  • Einsiedl F, Maloszewski P, Stichler W (2009) Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system. J Hydrol 365:113–121

    Article  Google Scholar 

  • Engelen G, Van Der Griend A (1984) A lysimetric snow-pillow stations for continuous monitoring of the snow cover cycle and its processes at the “Seiser Alm”, South Tyrol, N Italy. Schneehydrologische Forschung in Mitteleuropa, pp 129–143

  • Fiorillo F, Guadagno FM (2012) Long karst spring discharge time series and drougths occurrence in Southern Italy. Environ Earth Sci 65(8):2273–2283

    Article  Google Scholar 

  • Fleury P, Plagnes V, Bakalovicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345(1–2):38–49

    Article  Google Scholar 

  • Ford D, Williams P (1989) Karst geomorphology and hydrology. Unwin Hyman, London

    Book  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, London

    Book  Google Scholar 

  • Galleani L, Vigna B, Banzato C, Lo Russo S (2011) Validation of a vulnerability estimator for spring protection areas: the vespa index. J Hydrol 396:13. doi:10.1016/j.jhydrol.2010.11.012

    Article  Google Scholar 

  • Goldscheider N, Hötzl H (1999) Hydrogeological characteristics of folded alpine karst systems exemplified by the gottesacker plateau (German-Austrian alps). Acta Carsologica 28(1):87–103

    Google Scholar 

  • Gremaud V, Goldscheider N, Savoy L, Favre G, Masson H (2009) Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron Sanetsch, Swiss Alps. Hydrogeol J 17:1833–1848

    Article  Google Scholar 

  • Hottelet C, Braun L, Leibungdgut C, Rieg A (1993) Simulation of snowpack and discharge in an alpine karst basin. Snow Glacier Hydrol 218:249–260

    Google Scholar 

  • Kirnbauer R, Bloschl G (1990) A lysimetric snow pillow statio at Kuhtai/Tyrol. Hydrology in mountainous regions. IAHS 193:173–180

    Google Scholar 

  • Klimchouk A, Bayari CS, Nazik L, Tork K (2006) Glacial destruction of cave systems in high mountains, with special reference to the Aladaglar massif, Central Taurids Turkey. Acta Carsol 35(2):111–121

    Google Scholar 

  • Maire R (1983) Les karst de haute montagne dans le monde. In: Proceedings of Carso di Alta Montagna, vol I, Imperia, pp 285–302

  • Maire R (1990) La haute montaigne calcaire. Karstologia Memories 3

  • Maire R, Nicod J (1984) Apecus sur l’hydrologie karstique des Alpes occidentales (systèmes karstique et règimes des sources). Karstologia 3:18–23

    Google Scholar 

  • Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow system in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. J Hydrol 256:48–59

    Article  Google Scholar 

  • Mangin A (1984) Pour une meilleure connaissance des systémes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67:25–43

    Article  Google Scholar 

  • Mangin A (1998) L’approche hydrogéologique des karsts. Speleochronos 9:3–26

    Google Scholar 

  • Mocochain L, Audra P, Clauzon G, Bellier O, Bigot JY, Parize O, Monteil P (2009) The effect of river dynamics induced by the Messinian Salinity Crisis on karst landscape and caves: example of the lower Ardeche river (mid Rhone valley). Geomorphology 106:46–61

    Article  Google Scholar 

  • Moindrot P, Chauve P, Mania J (1988) Influience de l’enneigement sur l’hydrologie du bassin experimental des fourgs (Franche-Comtè, France). In: Proceedings of Quatrieme Colloque d’Hydrologie en pays calcaire et en milieu fissurè. Besancon, pp 121–129

  • Monnin M, Bakalowicz M (2003) Natural tracing in karst aquifers. In: Proceedings of land and marine hydrogeology. Elsevier, Amsterdam, pp 93–114

  • Nanni T, Rusi S (2001) Correlation between melting of snows and chemical–physical characteristics of springs, as parameters for the evaluation of the vulnerability of a karst aquifer in the central Apennine (Italy). In: Proceedings of 7th conference on limestone hydrology and fissured media, Besancon (France), pp 261–264

  • Nanni T, Rusi S (2003) Idrogeologia del massiccio carbonatico della montagna della Majella (Appennino centrale). Boll. Soc Geol. It. 122:173–202

    Google Scholar 

  • Plagnes V, Bakalowicz M (2001) May it propose a unique interpretation for karstic spring chemogrphs? In: Proceedings of 7th conference on limestone hydrology and fissured media Besancon: Jacques Mudry and Francois Zwahlen, pp 293–298

  • Plan L, Decker K, Faber R, Wagreich M, Grasemann B (2009) Karst morphology and groundwater vulnerability of high alpine karst plateaus. Environ Geol 58:285–297

    Article  Google Scholar 

  • Schuster GM, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Spadoni M, Brilli M, Giustini F, Petitta M (2010) Using GIS for modelling the impact of current climate trend on the recharge area of the S. Susanna spring (central Apennines, Italy). Hydrol Process 24:50–64

    Article  Google Scholar 

  • Vigna B (2002) Monitoraggio e valutazione della vulnerabilità all’inquinamento degli acquiferi carsici. In: Proceedings of Le risposte idriche sotterranee delle Alpi Apuane: conoscenze attuali e prospettive di utilizzo, Massa, pp 23–35

  • Vigna B (2007) Schematizzazione e funzionamento degli acquiferi in rocce carbonatiche. In L‘acqua nelle aree carsiche in Italia. Memorie dell’Istituto Italiano di Speleologia, serie II, vol XIX, pp 21–26

    Google Scholar 

  • Vigna B, Banzato C (2012) The snow melting process. In: Proceedings of flowpath 2012. Hydrogeology pathways, Bologna (Italy), pp 1–2

  • Vigna B, Suozzi E (2009) The importance of the nival melting process on the recharging of acquifers. In: Proceedings of Epitome, Geoitalia, Rimini (Italy), p 41

  • Vigna B, Fiorucci A, Banzato C, Magrì F (2006) The rio martino system: a typical example of a karstic aquifer with a Morainic Overburden (NW Italy). In: Proceedings of all abaut karst, water, Vienna Waterworks, City of Vienna ERDF, pp 189–198

  • White WB (1969) Conceptual models for carbonate aquifers. Ground Water 7(3):15–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartolomeo Vigna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigna, B., Banzato, C. The hydrogeology of high-mountain carbonate areas: an example of some Alpine systems in southern Piedmont (Italy). Environ Earth Sci 74, 267–280 (2015). https://doi.org/10.1007/s12665-015-4308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4308-8

Keywords

Navigation