Skip to main content

Advertisement

Log in

Effects of land use planning on aboveground vegetation biomass in China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Dramatic land use change is expected to take place in China in the coming decades, which will exert great impact on the vegetation biomass. The paper assesses how land use change will influence the size and spatial distribution of the vegetation biomass in China. A spatially explicit land use change model, Dyna-CLUE, is employed together with a biomass density approach to account for the effects of forest age on biomass change. Two scenarios have been developed. The first is a trend scenario where land use trends during the period 1985–1995 are extrapolated, representing the situation before implementing the national ecological restoration program. The second is a planning scenario which takes into consideration a range of land use planning measures. Possible temporal and spatial distribution of land use and vegetation biomass across China was simulated. The results indicate that under the planning scenario, vegetation biomass would be 15.47 Gt in 2030, showing an increase by 0.11 Gt compared to that in 2005. Under the trend scenario, however, the biomass would be 14.62 Gt in 2030, 0.02 Gt higher than that in 2005 due to the forest devastation and forest age effect. Seeming to be relatively trivial, the differences between the scenarios are huge in absolute terms, illustrating the impact of land use planning on biomass variation. Compared with the trend scenario, the area of planted forests under the planning scenario will be larger and biomass density lower. Thus under the planning scenario, the vegetation biomass will be more likely to increase, acting as a carbon sink in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13(3):679–706

    Article  Google Scholar 

  • Cantarello E, Newton AC, Hill RA (2011) Potential effects of future land-use change on regional carbon stocks in the UK. Environ Sci Policy 14(1):40–52

    Article  Google Scholar 

  • Cao MK, Prince SD, Li KR, Tao B, Small J, Shao XM (2003) Response of terrestrial carbon uptake to climate interannual variability in China. Glob Change Biol 9(4):536–546

    Article  Google Scholar 

  • Eaton J, McGoff N, Byrne K, Leahy P, Kiely G (2008) Land cover change and soil organic carbon stocks in the Republic of Ireland 1851–2000. Clim Change 91(3–4):317–334

    Article  Google Scholar 

  • Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol 22(4):617–631

    Article  Google Scholar 

  • Fang JY, Liu GH, Xu SL (1996) Carbon pools in terrestrial ecosystems in China. Chinese Science and Tech- nology Publisher, Beijing

    Google Scholar 

  • Fang JY, Wang GG, Liu GH, Xu SL (1998) Forest biomass of China: an estimate based on the biomass-volume relationship. Ecol Appl 8(4):1084–1091

    Google Scholar 

  • Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525):2320–2322

    Article  Google Scholar 

  • Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change 46(1–2):115–158

    Article  Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Article  Google Scholar 

  • Gehrung J, Scholz Y (2009) The application of simulated NPP data in improving the assessment of the spatial distribution of biomass in Europe. Biomass Bioenergy 33(4):712–720

    Article  Google Scholar 

  • Geoghegan J, Lawrence D, Schneider LC, Tully K (2010) Accounting for carbon stocks in models of land-use change: an application to Southern Yucatan. Reg Environ Change 10(3):247–260

    Article  Google Scholar 

  • Hellmann F, Verburg PH (2010) Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manage 91(6):1389–1396

    Article  Google Scholar 

  • Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCCSRES land-use scenarios. Biomass Bioenerg 29(4):225–257

    Article  Google Scholar 

  • Houghton RA (1995) Land-use change and the carbon-cycle. Glob Change Biol 1(4):275–287

    Article  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus Ser B Chem Phys Meteorol 62(5):337–351

    Article  Google Scholar 

  • Houghton RA, Goodale CL (2004) Effects of land-use change on the carbon balance of terrestrial ecosystems. Ecosyst Land Use Change 153:85–98

    Article  Google Scholar 

  • Houghton RA, Hackler JL (2003) Sources and sinks of carbon from land-use change in China. Glob Biogeochem Cycles 17(2):1034

  • Kerr S, Liu SG, Pfaff ASP, Hughes RF (2003) Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model. J Environ Manage 69(1):25–37

    Article  Google Scholar 

  • Lioubimtseva E, Adams JM (2004) Possible implications of increased carbon dioxide levels and climate change for desert ecosystems. Environ Manage 33:S388–S404

    Article  Google Scholar 

  • Liu JY, Zhuang DF, Luo D, Xiao X (2003) Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data. Int J Remote Sens 24(12):2485–2500

    Article  Google Scholar 

  • Liu XP, Li X, Shi X, Zhang XH, Chen YM (2010) Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int J Geogr Inf Sci 24(5):783–802

    Article  Google Scholar 

  • Matthews R, Gilbert N, Roach A, Polhill JG, Gotts NM (2007) Agent based land-use models: a review of applications. Landscape Ecol 22(10):1447–1459

    Article  Google Scholar 

  • McConnell WJ, Sweeney SP, Mulley B (2004) Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agric Ecosyst Environ 101(2–3):171–184

    Article  Google Scholar 

  • Milne R, Brown TA (1997) Carbon in the vegetation and soils of Great Britain. J Environ Manage 49(4):413–433

    Article  Google Scholar 

  • Mu QZ, Zhao MS, Running SW, Liu ML, Tian HQ (2008) Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. J Geophy Res Biogeosci 113(G1)

  • Nabuurs GJ (2001) European forests in the 21st century: long-term impacts of natural oriented forest management assessed with a large scale scenario model. Dissertation, University of Joensuu, Finland

  • Nabuurs GJ, Pussinen A, van Brusselen J, Schelhaas MJ (2007) Future harvesting pressure on European forests. Eur J Forest Res 126(3):391–400

    Article  Google Scholar 

  • Nagasaka A, Nakamura F (1999) The influences of land-use changes on hydrology and riparian environment in a northern Japanese landscape. Landscape Ecol 14(6):543–556

    Article  Google Scholar 

  • Ni J (2001) Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Clim Change 49(3):339–358

    Article  Google Scholar 

  • Olofsson P, Torchinava P, Woodcock CE, Baccini A, Houghton RA, Ozdogan M, Zhao F, Yang X (2010) Implications of land use change on the national terrestrial carbon budget of Georgia. Carbon Balance Manag 5:4

    Article  Google Scholar 

  • Peng CH, Apps MJ (1997) Contribution of China to the global carbon cycle since the last glacial maximum—reconstruction from palaeovegetation maps and an empirical biosphere model. Tellus Ser B Chem Phys Meteorol 49(4):393–408

    Article  Google Scholar 

  • Perrings C, Naeem S, Ahrestani F, Bunker DE, Burkill P, Canziani G, Elmqvist T, Ferrati R, Fuhrman JA, Jaksic F, Kawabata Z, Kinzig A, Mace GM, Milano F, Mooney H, Prieur-Richard AH, Tschirhart J, Weisser W (2010) Ecosystem Services for 2020. Science 330(6002):323–324

    Article  Google Scholar 

  • Piao SL, Fang JY, Zhou LM, Tan K, Tao S (2007) Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Glob Biogeochem Cycles 21(2)

  • Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458(7241):1009–1082

    Article  Google Scholar 

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66(8):1011–1016

  • Pussinen (2001) Manual for the European Forest Information Senario Model

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  Google Scholar 

  • Rodriguez W, August PV, Wang YQ, Paul JF, Gold A, Rubinstein N (2007) Empirical relationships between land use/cover and estuarine condition in the Northeastern United States. Landscape Ecol 22(3):403–417

    Article  Google Scholar 

  • Saatchi SS, Houghton RA, Alvala R, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon basin. Glob Change Biol 13(4):816–837

    Article  Google Scholar 

  • Sales MH, Souza CM, Kyriakidis PC, Roberts DA, Vidal E (2007) Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondonia, Brazil. Ecol Modell 205(1–2):221–230

    Article  Google Scholar 

  • Schroeder P (1996) A carbon budget for Brazil: influence of future land-use change. Clim Change 33(3):369–383

    Article  Google Scholar 

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337

    Article  Google Scholar 

  • Schulp CJE, Nabuurs GJ, Verburg PH (2008) Future carbon sequestration in Europe—Effects of land use change. Agric Ecosyst Environ 127(3–4):251–264

    Article  Google Scholar 

  • Sitch S, Brovkin V, von Bloh W, van Vuuren D, Assessment B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem Cycles 19(2)

  • Tao FL and Zhang Z (2010) Dynamic responses of terrestrial ecosystems structure and function to climate change in China. J Geophys Res Biogeosci 115

  • Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104(52):20666–20671

    Article  Google Scholar 

  • Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecol 24(9):1167–1181

    Article  Google Scholar 

  • Verburg PH, Veldkamp A, Fresco LO (1999) Simulation of changes in the spatial pattern of land use in China. Appl Geogr 19(3):211–233

    Article  Google Scholar 

  • Verburg PH, Chen YQ, Veldkamp TA (2000) Spatial explorations of land use change and grain production in China. Agric Ecosyst Environ 82(1–3):333–354

    Article  Google Scholar 

  • Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006a) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ 114(1):39–56

    Article  Google Scholar 

  • Verburg PH, van Bodegom PM, Denier van der Gon HAC, Bergsma AR, van Breemen N (2006b) Upscaling regional emissions of greenhouse gases from rice cultivation: methods and sources of uncertainty. Plant Ecol 182:89–106

    Article  Google Scholar 

  • Wang XK, Feng ZW, Ouyang ZY (2001) The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. For Ecol Manage 148(1–3):117–123

    Article  Google Scholar 

  • Xu B, Guo ZD, Piao SL, Fang JY (2010) Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Sci China Life Sci 53(7):776–783

    Article  Google Scholar 

  • Yue TX, Fan ZM, Liu JY (2007) Scenarios of land cover in China. Glob Planet Change 55(4):317–342

    Article  Google Scholar 

  • Zaehle S, Bondeau A, Carter TR, Cramer W, Erhard M, Prentice IC, Reginster I, Rounsevell MDA, Sitch S, Smith B, Smith PC, Sykes M (2007) Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems 10:380–401

    Article  Google Scholar 

  • Zhao TT, Bergen KM, Brown DG, Shugart HH (2009) Scale dependence in quantification of land-cover and biomass change over Siberian boreal forest landscapes. Landscape Ecol 24(10):1299–1313

    Article  Google Scholar 

  • Zheng X, Zhu JJ, Yan QL, Song LN (2012) Effect of land use changes on the groundwater table and the decline of Pinus sylvestris var. Mongolia plantations in southern Horqin Sandy Land, Northeast China. Agric Water Manag 109:94–106

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by China National Science Fund for Distinguished Young Scholars (40825003), by National Basic Research Priorities Program (2010CB950904) of Ministry of Science and Technology of the People’s Republic of China, and by National Natural Science Foundation of China (41301185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yue, T., Wang, M. et al. Effects of land use planning on aboveground vegetation biomass in China. Environ Earth Sci 73, 6553–6564 (2015). https://doi.org/10.1007/s12665-014-3875-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3875-4

Keywords

Navigation