Skip to main content
Log in

Evaluation and calibration of Blaney–Criddle equation for estimating reference evapotranspiration in semiarid and arid regions

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 08 January 2015

Abstract

Penman–Monteith (FAO-56 PM) equation is suggested as the standard method for estimating evapotranspiration by the International Irrigation and Drainage Committee and FAO. On the other hand, the Blaney–Criddle (BC) temperature-based equation is an alternative and simple method compared with the FAO-56 PM equation. In the present study, the original coefficients BC equation (a and b) were calculated and calibrated spatial and temporal calibration at each station for each month based on the FAO-56 PM method for estimating reference evapotranspiration (ET0) from 15 meteorological stations in central Iran (about 170,000 km2) under semi-arid and arid conditions. The values of a and b in BC equation were negative and positive for all months of any station, respectively. Highest and lowest a values were obtained in December and August, respectively. December showed the lowest b values while August showed the highest. Therefore, the values of a and b were greater in cold and warm months of the year, respectively. After calibration, the root mean square error, mean bias error and percentage error values were obtained lower than 0.50, 0.015 mm day−1 and 10 % for the whole stations and months, respectively. The calibrated b values (b cal) were proportional and inversely to the calibrated a values (a cal ). The ET0 values based on the calibrated Blaney–Criddle equation were better than the results of the BC equation when compared to the FAO-56 PM equation as the reference model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu Rizaiza S, Al-Osaimy H (1996) A statistical approach for estimating irrigation water usage in western Saudi Arabia. Agric Water Manag 29(2):175–185

    Article  Google Scholar 

  • Ali MH, Shui LT (2009) Potential evapotranspiration model for Muda irrigation project, Malaysia. Water Resour Manag 23:57–69

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56. FAO, Rome

  • Allen RG, Clemmens AJ, Burt CM, Solomon K, O’Halloran T (2005) Prediction accuracy for project wide evapotranspiration using crop coefficients and reference evapotranspiration. J Irrig Drain Eng 131:24–36

    Article  Google Scholar 

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Beselga J, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman–Monteith method. Agric Water Manag 81:1–22

    Article  Google Scholar 

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated area from climatological irrigation data. US Department of Agriculture Soil Conservation Service, Washington, DC, Technical Paper No. 96

  • Blaney HF, Criddle WD (1962) Determining consumptive use and irrigation water requirements. USDA Technical Bulletin 1275, US Department of Agriculture, Beltsville

  • Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23:825–837

    Article  Google Scholar 

  • Chiew FHS, Kamaladasa NN, Malano HM, Mcmahon TA (1995) Penman–Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia. Agric Water Manag 28:9–21

    Article  Google Scholar 

  • Dai Z, Samper J (2004) Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour Res 40:W07407. doi:10.1029/2004WR003248

    Google Scholar 

  • DehghaniSanij H, Yamamoto T, Rasiah V (2004) Assessment of evapotranspiration estimation models for use in semi-arid environments. Agric Water Manag 64:91–106

    Article  Google Scholar 

  • Di Stefano C, Ferro V (1997) Estimation of evapotranspiration by Hargreaves formula and remotely sensed data in semi-arid Mediterranean areas. J Agric Eng Res 68:189–199

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO. 1977a. crop water requirements. FAO Irrig Drain. Paper No. 24. Rome, Italy: FAO

  • Doorenbos J, Pruitt WO (1977b) Guidelines for prediction of crop water requirements. FAO Irrig Drain. Paper No. 24. 2nd edn. FAO, Rome

  • Garcia M, Raes D, Allen R, Herbas C (2004) Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agr For Meteorol 125:67–82

    Article  Google Scholar 

  • Garcia M, Raes D, Jacobsen SE, Michel T (2007) Agroclimatic constraints for rainfed agriculture the Bolivian Altiplano. J Arid Environ 71:109–121

    Article  Google Scholar 

  • Gavilan PD (2002) La advección de calor sensible en el Valle Medio del Guadalquivir y su influencia en la medida y estimación de la evapotranspiración. Thesis (PhD). Córdoba University, Córdoba

  • Ge G, Deliang C, Guoyu R, Yu C, Yaoming L (2006) Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J Geogr Sci 16:3–12

    Article  Google Scholar 

  • George BA, Reddy BRS, Raghuwanshi NS, Wallender WW (2002a) Decision support system for estimating reference evapotranspiration. J Irrig Drain Eng 128(1):1–10

    Article  Google Scholar 

  • George BA, Reddy BRS, Raghuwanshi NS, Wallender WW (2002b) Decision support system for estimating reference evapotranspiration. J Irrig Drain Eng 128:1–10

    Article  Google Scholar 

  • Ghamarnia H, Rezvani V, Khodaei E, Mirzaei H (2012) Time and place calibration of the Hargreaves equation for estimating monthly reference evapotranspiration under different climatic conditions. J Agric Sci 4(3):111–122

    Google Scholar 

  • Gocic M, Trajkovic S (2010) Software for estimating reference evapotranspiration using limited weather data. Comput Electron Agric 71:158–162

    Article  Google Scholar 

  • Gundekar HG, Khodke UM, Sarkar S, Rai RK (2008) Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. Irrig Sci 26:169–175

    Article  Google Scholar 

  • Heydari MM, Heydari M (2014a) Calibration of Hargreaves-Samani equation for estimating reference evapotranspiration in semiarid and arid regions. Arch Agron Soil Sci 60(5):695–713

    Article  Google Scholar 

  • Heydari MM, Heydari M (2014b) Evaluation of pan coefficient equations for estimating reference crop evapotranspiration in the arid region. Arch Agron Soil Sci 60(5):715–731

    Article  Google Scholar 

  • Heydari MM, Abbasi A, Heydari M (2013) Estimation of evapotranspiration in Ardestan, Center of Iran. World Appl Sci J 21(2):230–236

    Google Scholar 

  • Heydari MM, Aghamajidi R, Beygipoor Gh, Heydari M (2014a) Comparison and evaluation of 38 equations for estimating reference evapotranspiration in an arid region. Fresen Environ Bull 23(8a):1985–1996

    Google Scholar 

  • Heydari MM, Abbasi A, Fooladmand HR, Heydari M (2014b) Evaluation of reference evapotranspiration using real and estimated sunshine hours in a semi-arid and arid environment. Fresen Environ Bull 23(6):1295–1301

    Google Scholar 

  • Irmak S, Allen RG, Whitty EB (2003a) Daily Grass and alfalfa-reference evapotranspiration estimates and alfalfa to grass evapotranspiration ratios in Florida. J Irrig Drain Eng 129(5):360–370

    Article  Google Scholar 

  • Irmak S, Irmak A, Jones JW, Howell TA, Jacobs JM, Allen RG, Hoogenboom G (2003b) Predicting daily net radiation using minimum climatological data. J Irrig Drain Eng ASCE 129(4):256–269

    Article  Google Scholar 

  • Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Application to Tunisia. Agric Water Manag 95:707–715

    Article  Google Scholar 

  • James L (1988) Principles of farm irrigation system design. Wiley, New York

    Google Scholar 

  • Kravchenko A, Bullock DG (1999) A comparative study of mol. 88:1650–1657. Interpolation methods for mapping soil properties. Agron J 91:393–400

    Article  Google Scholar 

  • Lopez-Urrea R, de Santa Olalla FM, Fabeiro C, Moratalla A (2006) An evaluation of two hourly reference evapotranspiration equations for semi-arid conditions. Agric Water Manag 86(3):277–282

    Article  Google Scholar 

  • Marti P, Gonzalez-Altozano P, Gasque M (2011) Reference evapotranspiration estimation without local climatic data. Irrig Sci 29(6):479–495

    Article  Google Scholar 

  • Mohawesh O (2010) Spatio-temporal calibration of Blaney-Criddle equation for calculating ET0 in arid and semiarid environment. Water Resour Manag 24:2187–2201

    Article  Google Scholar 

  • Mohawesh OE, Talozi SA (2011) Comparison of Hargreaves and FAO56 equations for estimating monthly evapotranspiration for semi-arid and arid environments. Arch Agron Soil Sci 58(3):321–334

    Article  Google Scholar 

  • Mostafazadeh-Fard B, Heidarpour M, Hashemi SE (2009) Species factor and evapotranspiration for an Ash (Fraxinus rotundifolia) and Cypress (Cupressus arizonica) in an arid region. Aust J Crop Sci 64:91–106

    Google Scholar 

  • Ravazzani G, Corbari C, Morella S, Gianoli P, Mancini M (2012) Modified Hargreaves–Samani equation for the assessment of reference evapotranspiration in Alpine River basins. J Irrig Drain Eng 138(7):592–599

    Article  Google Scholar 

  • Ravelli F, Rota P (1999) Monthly frequency maps of reference evapotranspiration and crop water deficits in Southern Italy. Irrigation Experimentation Office of the Former Southern Italy Development Agency, Rome

    Google Scholar 

  • Snedecor GW, Cochran WG (1968) Statistical methods. Iowa State College Press, Ames

    Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005a) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005b) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131:73–84

    Article  Google Scholar 

  • Thepadia M, Martinez CJ (2012) Regional calibration of solar radiation and reference evapotranspiration estimates with minimal data in Florida. J Irrig Drain Eng. 138(2):111–119

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009a) Wind-adjusted Turc equation for estimating reference evapotranspiration at humid European locations. Hydrol Res 40(1):45–52

    Google Scholar 

  • Trajkovic S, Kolakovic S (2009b) Wind-adjusted Turc equation for estimating reference evapotranspiration at humid European locations. Hydr Res 40(1):45–52. doi:10.2166/nh.2009.002

    Google Scholar 

  • Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39:1214. doi:10.1029/2002WR001746.8

    Google Scholar 

  • Wang YM, Traore S, Kerh T (2007) Determination of a reference model for estimating evapotranspiration in Burkina Faso. In: Proceedings of the 6th WSEAS international conference on artificial intelligence, knowledge engineering and data bases, 16–19 Feb, Corfu Island

  • Zhao C, Nan Z, Cheng G (2005) Evaluating methods of estimating and modelling spatial distribution of evapotranspiration in the middle Heihe River basin, China. Am J Environ Sci 1(4):278–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.M., Tajamoli, A., Ghoreishi, S.H. et al. Evaluation and calibration of Blaney–Criddle equation for estimating reference evapotranspiration in semiarid and arid regions. Environ Earth Sci 74, 4053–4063 (2015). https://doi.org/10.1007/s12665-014-3809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3809-1

Keywords

Navigation