Skip to main content
Log in

A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents an approach to assess the methods of 2D elastic seismic full waveform inversion (FWI) and electrical resistivity tomography (ERT) for monitoring storage of CO2 in deep saline formations. As at a real site the subsurface is not fully known, this approach uses a synthetic field site. Densities and saturations are obtained from a numerical simulation of the injection process and are introduced into geophysical forward models which simulate the geophysical data acquisition from the surface (FWI) and boreholes (ERT). These synthetic geophysical data are then evaluated with respect to changes in CO2 saturation and are compared to the fully known CO2 saturation of the numerical process model to verify the geophysical monitoring methods. Results show that both methods are capable of detecting a thin CO2 phase body in about 2,200 m depth for a synthetic site in the North German Basin. Inverted CO2 saturations are in good agreement, however, both methods cannot resolve the CO2 phase edges of less than 4 m saturated thickness. The maximum error of estimated CO2 saturation is 10 % for the FWI method and 15 % for the ERT method, if accurate baseline models are available. The FWI method sensitivity on the baseline model is tested by a sensitivity analysis demonstrating high sensitivity on bulk density, but low sensitivity on fluid densities and porosity. ERT results are considerably improved using structural information from the FWI as constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Eng 146:54–62. doi:10.2118/942054-G

    Google Scholar 

  • Arts R, Eiken O, Chadwick A, Zweigel P, van der Meer L, Zinszner B (2002a) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. In: 6th International conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan

  • Arts R, Elsayed R, van der Meer L, Eiken O, Ostmo S, Chadwick A, Kirby G, Zinszner B (2002b) Estimation of the mass of injected CO2 at Sleipner using time-lapse seismic data. In: EAGE 64th Conference and Exhibition, Florence, Italy, Expanded Abstracts, H016

  • Arts R, Chadwick A, Eiken O, Zweigel P (2003) Interpretation of the 1999 and 2001 time-lapse seismic data (wp 5.4). SACS report, TNO

  • Asnaashari A, Brossier R, Garambois S, Audebert F, Thore P, Virieux J (2013a) Regularized seismic full waveform inversion with prior model information. Geophysics 78(2):R25–R36

    Article  Google Scholar 

  • Asnaashari A, Brossier R, Garambois S, Audebert F, Virieux J (2013b) Target-oriented time-lapse imaging using FWI with prior model information, EAGE expanded abstracts. In: 75th EAGE Conference and Exhibition, London (U.K), We P07 06

  • Baldschuhn R, Frisch U, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol. Jb., A 153, mit 3 CD ROMs, Hannover (BGR)

  • Bauer S, Class H, Ebert M, Feeser V, Götze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schäfer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring techniques for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67(2):351–367. doi:10.1007/s12665-012-1707-y

    Article  Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943. doi:10.1007/s12665-013-2883-0

    Article  Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New York, p 674, ISBN:9780486656755

  • Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 19:220–233. doi:10.1016/j.ijggc.2013.09.002

    Article  Google Scholar 

  • Brossier R (2011) Two-dimensional frequency-domain visco-elastic full waveform inversion: parallel algorithms, optimization and performance. Comput Geosci 37:444–455

    Article  Google Scholar 

  • Brossier R, Operto S, Virieux J (2010) Which data residual norm for robust elastic frequency-domain full waveform inversion? Geophysics 75:37–46

    Article  Google Scholar 

  • Chadwick RA, Arts R, Eiken O (2005) 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In: Dor´e A, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives—Proceedings of the Sixth Petroleum Geology Conference, 1385–1399. Geological Society of London

  • Chadwick RA, Noy D, Arts R, Eiken O (2009) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1(1):2103–2110. doi:10.1016/j.egypro.2009.01.274 (ISSN:1876-6102)

    Article  Google Scholar 

  • Choi Y, Min D-J, Shin C (2008) Two-dimensional waveform inversion of multi-component data in acoustic-elastic coupled media. Geophys Prospect 56:863–881

    Article  Google Scholar 

  • Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844

    Article  Google Scholar 

  • Denli H, Huang L (2009) Double-difference elastic waveform tomography in the time domain. In: SEG Technical Program Expanded Abstracts, pp 2302–2306

  • Dethlefsen F, Ebert M, Dahmke A (2014) A geological database for parameterization in numerical modeling of subsurface storage in Northern Germany. Environ Earth Sci 71:2227–2244. doi:10.1007/s12665-013-2627-1

    Article  Google Scholar 

  • Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):253–271. doi:10.1016/S0009-2541(02)00263-2

    Google Scholar 

  • Duveneck E (2004) Tomographic determination of seismic velocity models with kinematic wavefield attributes. PhD thesis, Karlsruhe University, Logos Verlag Berlin

  • Eiken O, Brevik I, Arts R, Lindeberg E, Fagervik K (2000) Seismic monitoring of CO2 injected into a marine aquifer. SEG International Exposition and 70th Annual Meeting, Expanded Abstracts, RC-8.2

  • Fichtner A (2011) Full seismic waveform modelling and inversion. Springer, Heidelberg, p 343

    Book  Google Scholar 

  • Gassmann F (1951) Über die Elastizität poröser Medien. Mitteilungen aus dem Institut für Geophysik an der Eidgenössischen Technischen Hochschule Zürch, Band 17, Kümmerly & Frey, pp 1–23

  • Geluk MC, Röhling H-G (1999) High-resolution sequence stratigraphy of the lower Triassic Bundsandstein: a new tool for basin analysis. Zbl Geol Paläont Teil I 7–8:727–745

    Google Scholar 

  • Ghaderi A, Landrø M (2009) Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics 74(2):O17–O28

    Article  Google Scholar 

  • Hagrey SA al, Strahser M, Rabbel W (2013) Seismic and geoelectric modelling studies of parameters controlling CO2 geostorage in Saline Reservoirs. Int J Greenh Gas Control IJGGC-856, p 11, doi:10.1016/j.ijggc.2013.01.041

  • Hagrey SA al, Köhn D, Rabbel W (2014) Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs, Springer Plus. doi:10.1186/2193-1801-3-267

  • Hagrey SA (2011) CO2 Plume modeling in deep saline reservoirs by 2D ERT in boreholes. Lead Edge 30(1):24–33

    Article  Google Scholar 

  • Hagrey SA (2012a) 2D model study of CO2 Plumes in Saline Reservoirs by Borehole Resistivity Tomography. Int J Geophys, vol 2011, p 12 (Article ID 805059). doi:10.1155/2011/805059

  • Hagrey SA (2012b) 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modelling. Pure appl Geophys 169(7):1283–1292. doi:10.1007/s00024-011-0369-0

    Article  Google Scholar 

  • Hagrey SA (2012c) Geophysical imaging techniques. In: Mancuso S (ed) Measuring roots—an update approach, Springer-Verlag, Heidelberg, Chapter 10, pp 151–188. doi:10.1007/978-3-642-22067-8_10

  • Hannis S (2010) Monitoring technologies used at some geological CO2 storage sites. In: Innovation for sustainable production (i-SUP) conference proceedings, Bruges, April 18–21 2010

  • Hese F (2012) 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Ph.D. thesis, University of Kiel, Kiel, p 156

  • Holberg O (1987) Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys Prospect 35:629–655

    Article  Google Scholar 

  • Hoversten GM, Myer LR (2000) Monitoring of CO2 sequestration using integrated geophysical and reservoir data. In: Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, CSIRO, Collingwood, Victoria, Australia, pp 305–310

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, London

    Google Scholar 

  • Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2SINK Group (2010) Geoelectrical techniques for monitoring geological CO2 storage: first results from crosshole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenh Gas Control 4:816–826

    Article  Google Scholar 

  • Köhn D (2011) Time domain 2D elastic full waveform tomography, PhD Thesis, Kiel University. http://nbnresolving.de/urn:nbn:de:gbv:8-diss-67866. Accessed 12/12/2013

  • Köhn D, De Nil D, Kurzmann A, Przebindowska A, Bohlen T (2012) On the influence of model parameterization in elastic full waveform tomography. Geophys J Int 191:325–345

    Article  Google Scholar 

  • Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5):SM155–SM167

  • Levander A (1988) Fourth order finite-difference P-SV seismograms. Geophysics 53(11):1425–1436

    Article  Google Scholar 

  • Li D, Graupner B, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824 (ISSN1876-6102). doi:10.1016/j.egypro.2011.02.317

  • Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp a coupled simulator for reactive transport in multiphase systems—code development and application at a representative CO2 storage formation in Northern Germany. Acta Geotech 9:67–79. doi:10.1007/s11440-013-0234-7

    Article  Google Scholar 

  • Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton techniques in resistivity imaging inversion. J Appl Geophys 49:149–162

    Article  Google Scholar 

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion techniques in 2D electrical imaging surveys. Explor Geophys 34:182–187

    Article  Google Scholar 

  • Loke MH, Wilkinson PB, Chambers JE (2010) Fast computation of optimized electrode arrays for 2D resistivity surveys. Comput Geosci 36:1414–1426

    Article  Google Scholar 

  • Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging technique. J Appl Geophys (in press). doi:10.1016/j.jappgeo.2013.02.017

  • Lüth S, Bergmann P, Cosma C, Enescu N, Giese R, Götz J, Ivanova A, Juhlin C, Kashubin A, Yang C, Zhang F (2011) Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany). Energy Procedia 4:3435–3442

    Article  Google Scholar 

  • Magri F, Bayer U, Pekdeger A, Otto R, Thomsen C, Maiwald U (2009) Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics 470(1–2):183–194

    Article  Google Scholar 

  • Mann J (2002) Extensions and applications of the common-reflection-surface stack method. PhD thesis, Karlsruhe University, Logos Verlag, Berlin

  • Martens S, Liebscher A, Möller F, Henninges J, Kempka T, Lüth S, Norden B, Prevedel B, Szizybalski A, Zimmer M, Kühn M, the Ketzin Group (2013) CO2 storage at the Ketzin pilot site, Germany: fourth year of injection, monitoring, modelling and verification. Energy Procedia 37:6434–6443. doi:10.1016/j.egypro.2013.06.573

    Article  Google Scholar 

  • Mathieson A, Midgely J, Wright I, Saoula N, Ringrose P (2011) In Salah CO2 Storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 4:3596–3603. doi:10.1016/j.egypro.2011.02.289

    Article  Google Scholar 

  • Maurer HR, Greenhalgh SA, Manukyan E, Marelli S, Green AG (2012) Receiver coupling effects in seismic waveform inversions. Geophysics 77(1):R57–R63

    Article  Google Scholar 

  • Meadows M (2008) Time-lapse seismic modelling and inversion of CO2 saturation for storage and enhanced oil recovery. Lead Edge 27:506–516

    Article  Google Scholar 

  • Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. IPCC Spec. Rep. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitiku AB, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci 70(8):3661–3673. doi:10.1007/s12665-013-2580-z

    Article  Google Scholar 

  • Mitiku AB, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2 interaction with water and rock formation and assessment of its impact referring to Northern Germany Sedimentary Basin. Appl Geochem. doi:10.1016/j.apgeochem.2013.06.008

  • Mora P (1987) Nonlinear two-dimensional elastic inversion of multi offset seismic data. Geophysics 52:1211–1228

    Article  Google Scholar 

  • Nakatsuka Y, Xue Z, Garcia H, Matsuoka T (2010) Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. Int J Greenh Gas Control 4:209–216

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical Optimization. Springer, New York

    Google Scholar 

  • Noel M, Xu B (1991) Archaeological investigation by electrical resistivity tomography: a preliminary study. Geophys J Int 107:95–102

    Article  Google Scholar 

  • Pratt RG, Gao F, Zelt C, Levander A (2002) A comparison of ray-based and waveform tomography—implications for migration. In: 64th Conference of the European Association of Geoscientists and Engineers, Florence, Paper B023

  • Queisser M, Singh SC (2012) Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner. Geophys Prospect 61:537–555

    Article  Google Scholar 

  • Queisser M, Singh SC (2013) Localizing CO2 at Sleipner—Seismic images versus P-wave velocities from waveform inversion. Geophysics 78:131–146

    Article  Google Scholar 

  • Ramirez AL, Nitao JJ, Hanley WG, Aines R, Glaser RE, Sengupta SK, Dyer KM, Hickling TL, Daily WD (2005) Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach. J Geophys Res 110:B02101. doi:10.1029/2004JB003449

    Article  Google Scholar 

  • Röhling HG (1999) The quickborn sandstone—a new lithostratigraphic unit in the lowermost Middle Buntsandstein (Scythian). Zbl. Geol. Paläont. Teil I, 1998(7–8): 797–812 (Stuttgart)

  • Schlumberger (1985) Schlumberger log interpretation charts. Schlumberger Well Services, Schlumberger Limited, New York

  • Schlumberger (2012) Eclipse 100 Technical Description and User Manual

  • Shin C, Cha YH (2008) Waveform inversion in the Laplace domain. Geophys J Int 173(3):922–931

    Article  Google Scholar 

  • Shin C, Ha W (2008) A comparison between the behavior of objective functions for waveform inversion in the frequency and laplace domains. Geophysics 73(5):VE119–VE133

  • Shipp RM, Singh SC (2002) Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys J Int 151:325–344

    Article  Google Scholar 

  • Sirgue L (2003) Inversion de la forme d’on dedans le domaine fréquentiel de donnéessismiques grand offset. Thèse de doctorat, Université Paris 11, France—Queen’s University, Canada

  • Sirgue L, Barkved OI, Dellinger J, Etgen J, Albertin U, Kommedal JH (2010) Full waveform inversion: the next leap forward in imaging at Valhall. First Break 28:65–70

    Article  Google Scholar 

  • Smith T, Hoversten M, Gasperikova E, Morrison F (1999) Sharp boundary inversion of 2D magnetotelluric data. Geophys Prospect 47:469–486

    Article  Google Scholar 

  • Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69:120–139

    Article  Google Scholar 

  • Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8):1259–1266

    Article  Google Scholar 

  • Tarantola A (1986) A strategy for non-linear inversion of seismic reflection data. Geophysics 51(10):1893–1903

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory: techniques for data fitting and model parameter estimation. Elsevier, New York

    Google Scholar 

  • Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901

    Article  Google Scholar 

  • Wenske I, Mispel J, Köhn D (2011) 2D Joint full waveform inversion of elastic surface and VSP seismic data in time domain. In: 73rd Conference of the European Association of Geoscientists and Engineers, Vienna

  • Wilkinson PB, Meldrum PI, Chambers JE, Kuras O, Ogilvy RD (2006) Improved strategies for the automatic selection of optimised sets of electrical resistivity tomography measurement configurations. Geophys J Int 167:1119–1126

    Article  Google Scholar 

  • Winthaegen P, Arts R, Schroot B (2005) Monitoring subsurface CO2 storage. Oil Gas Sci Technol—Rev IFP 60(3):573–582

  • Xue Z, Kim J, Mito S, Kitamura K, Matsuoka T (2009) Detecting and monitoring CO2 with P-wave velocity and resistivity from both laboratory and field scales. Soc Pet Eng 126885:6p

    Google Scholar 

Download references

Acknowledgments

We thank D. De Nil for constructive and fruitful discussions and S. Siebrands for computer work. This study has been carried out within the framework of research projects “CO2Mopa” and “ANGUS+” funded mainly by the German Federal Ministry of Education and Research (BMBF), and partially by EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Benisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benisch, K., Köhn, D., al Hagrey, S. et al. A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environ Earth Sci 73, 3077–3094 (2015). https://doi.org/10.1007/s12665-014-3603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3603-0

Keywords

Navigation