Skip to main content
Log in

Isotope hydrology and geochemical modeling: new insights into the recharge processes and water–rock interactions of a fissured carbonate aquifer (Gran Sasso, central Italy)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The goal of this paper was to characterize the recharge process and water–rock interactions in a regional homogeneous fractured carbonate aquifer in the Mediterranean environment (Gran Sasso, central Italy) through isotope data (δ2H, δ18O and δ13C-DIC) collected between 2006 and 2010. Samples were collected from the springs of the Gran Sasso aquifer and from the Underground Nuclear Physics Laboratories, located within the aquifer. Additionally, the hydrochemical data and the reference hydrogeological frameworks of previous studies have been used as a starting point for the geochemical modeling. The Gran Sasso aquifer, which is bounded by terrigenous and clastic units acting as aquitards, accommodates a uniquely broad regional groundwater, which feeds springs mainly at its border with high, steady discharge. In total, these springs discharge of more than 18 m3/s. At a local scale for the aquifer core and at a regional scale for the overall aquifer, δ 2H, δ18O and δ13C-DIC isotope data, the geochemical inverse modeling through PHREEQC and the δ13C-DIC fractionation modeling through NETPATH 2.0 show the following. (1) Clear processes of evaporation and related isotope enrichment may be ruled out. (2) Groundwater flow is active and extends to the overall aquifer without clear signs of layering and partitioning. (3) Groundwater flowpaths radiate from the core toward the periphery. (4) In L’Aquila Plain, Gran Sasso groundwater mixes with shallow Quaternary water at a ratio of one half. (5) The main geochemical processes are the dissolution of calcite and dolomite, and in some cases, ion exchange occurs (Mg2+ and SO4 2− release, Ca2+ adsorption). (6) In the less mineralized recharge groundwater, the δ13C-DIC value is influenced by the δ13C-DIC value of rainfall, while in more evolved groundwater, the final δ13C-DIC value is reached by fractionation during the flowpaths, indicating a lengthy interaction with limestone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adinolfi Falcone R, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M (2008) Chemical and isotopic (δ18O‰, δ2H‰, δ13C‰, 222Rn) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN underground laboratory—central Italy). J Hydrol 357:368–388

    Article  Google Scholar 

  • Adinolfi Falcone R, Carucci V, Falgiani A, Manetta M, Parisse B, Petitta M, Rusi S, Spizzico M, Tallini M (2012) Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer due to the 2009 L’Aquila earthquake. Ital J Geosci 131:459–474. doi:10.3301/IJG.2011.34

    Google Scholar 

  • Amoruso A, Crescentini L, Petitta M, Rusi S, Tallini M (2011) Impact of the April 6, 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol Process 25:1754–1764. doi:10.1002/hyp.7933

    Article  Google Scholar 

  • Amoruso A, Crescentini L, Petitta M, Tallini M (2012) Parsimonious recharge/discharge modeling in carbonate fractured aquifers: the groundwater flow in the Gran Sasso aquifer (Central Italy). J Hydrol 476:136–146. doi:10.1016/j.jhydrol.2012.10.026

    Article  Google Scholar 

  • André L, Franceschi M, Pouchan P, Atteia O (2004) Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J Hydrol 305:40–62

    Article  Google Scholar 

  • Aquilina L, Ladouche B, Dörfliger N (2005) Recharge processes in karstic systems investigated through the correlation of chemical and isotopic composition of rain and spring-waters. Appl Geochem 20:2189–2206

    Article  Google Scholar 

  • Barberá JA, Andreo B, Almeida C (2013) Using non-conservative tracers to characterise karstification processes in the Merinos-Colorado-Carrasco carbonate aquifer system (southern Spain). Environ Earth Sci. doi:10.1007/s12665-013-2754-8

    Google Scholar 

  • Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotopes (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063–2081

    Article  Google Scholar 

  • Birk S, Liedl R, Sauter M (2004) Identification of localized recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286:179–193. doi:10.1016/j.jhydrol.2003.09.007

    Article  Google Scholar 

  • Boschetti T, De Felice V, Celico F (2013) The Pozzo del Sale groundwaters (Irpinia, Southern Apennines, Italy): origin and mechanisms of salinization. Aquat Geochem 19:303–322

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231:38–56

    Article  Google Scholar 

  • Carucci V, Petitta M, Aravena R (2012) Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem 27:266–280

    Article  Google Scholar 

  • Celico P, Gonfiantini R, Koizumi M, Mangano F (1984) Environmental isotope studies of limestone aquifers in central Italy. In: Proceedings of International Symposium on Isotope Hydrology in Water Resource Development. I.A.E.A., Vienna

  • Charlier JB, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64. doi:10.1016/j.jhydrol.2012.06.043

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Coleman M, Eggenkamp H, Matray JM, Pallant M (1993) Reduction of water with zinc for hydrogen analyses. Anal Chem 54:993–995

    Article  Google Scholar 

  • Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He and 85Kr. J Hydrol 191:245–265

    Article  Google Scholar 

  • Corbella M, Ayora C, Cardellach E (2003) Dissolution of deep carbonate rocks by fluid mixing: a discussion based on reactive transport modeling. J Geochem Explor 78–79:211–214

    Article  Google Scholar 

  • Corniello A, Ducci D (2014) Hydrogeochemical characterization of the main aquifer of the “Litorale Domizio-Agro Aversano NIPS” (Campania—southern Italy). J Geochem Explor 137:1–10

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • Craig H (1961) Isotopic variation in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Daniele L, Vallejos Á, Corbella M, Molina L, Pulido-Bosch A (2013) Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain). Appl Geochem 29:43–54

    Article  Google Scholar 

  • Demiroglu M, Orgun Y, Yaltirak C (2011) Hydrogeology and hydrogeochemistry of Gunyuzu semi-arid basin (Eskisehir, Central Anatolia). Environ Earth Sci 64:1433–1443. doi:10.1007/s12665-011-0967-2

    Article  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters. PrenticeHall, Upper Saddle River

    Google Scholar 

  • Dreybrodt W, Buhmann D (1991) A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem Geol 90:107–122

    Article  Google Scholar 

  • Dreybrodt W, Gabrovšek F (2003) Basic processes and mechanisms governing the evolution of karst. Speleogenesis and Evolution of Karst Aquifers. Virtual Sci J 1:1–26. http://www.speleogenesis.net/pdf/SG1/SG1_artId4.pdf

  • Eberts SM, George LL (2000) Regional groundwater flow and geochemistry in the Midwestern basins and Arches aquifer system in parts of Indiana, Ohio, Michigan, and IL. US Geological Survey Professional Paper 1423-C

  • Emblanch C, Blavoux B, Puig JM, Mudry J (1998) Dissolved organic carbon of infiltration within the karst hydrosystem. Geophys Res Lett 25:1459–1462

    Article  Google Scholar 

  • Emblanch C, Zuppi GM, Mudry J, Blavoux B, Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France). J Hydrol 279:262–274

    Article  Google Scholar 

  • Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Erőss A, Mádl-Szőnyi J, Surbeck H, Horváth Á, Goldscheider N, Csoma AÉ (2012) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137

    Article  Google Scholar 

  • Fiorillo F (2009) Spring hydrographs as indicators of droughts in a karst environment. J Hydrol 373:290–301

    Article  Google Scholar 

  • Florea LJ (2013) Selective recharge and isotopic composition of shallow groundwater within temperate, epigenic carbonate aquifers. J Hydrol 489:201–213

    Article  Google Scholar 

  • Ford D, Williams P (1989) Karst geomorphology and hydrology. Chapman & Hall, London

    Book  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45:36–45. doi:10.1111/j.1745-6584.2006.00261.x

    Article  Google Scholar 

  • Goldscheider N, Drew D (eds) (2007) Methods in Karst hydrogeology. Taylor & Francis, London

    Google Scholar 

  • Güler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J Hydrol 285:177–198

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geolol 179:129–143

    Article  Google Scholar 

  • Long AJ, Putnam LD (2004) Linear model describing three components of flow in karst aquifers using 18O data. J Hydrol 296:254–270

    Article  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Magaldi D, Tallini M (2000) A micromorphological index of soil development for the Quaternary geology research. Catena 41:261–276

    Article  Google Scholar 

  • Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow system in a karstic-fissured-porous aquifer, Schneealpe, Austria, by modeling of environmental 18O and 3H isotopes. J Hydrol 256:48–59

    Article  Google Scholar 

  • Meng YC, Liu GD (2013) Stable isotopic information for hydrological investigation in Hailuogou watershed on the eastern slope of Mount Gongga, China. Environ Earth Sci 69:29–39. doi:10.1007/s12665-012-1931-5

    Article  Google Scholar 

  • Mook WG (1970) Stable carbon and oxygen isotopes of natural waters in the Netherlands. Isotope Hydrology, IAEA, Vienna

    Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) Users guide to PHREEQC (version 2)—a computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. US Geological Survey, Water Resources Investigations Report 95-4259, Denver, Colorado

  • Perrin J, Jeannin PY, Zwahlen F (2003) Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. J Hydrol 279:106–124

    Article  Google Scholar 

  • Petitta M, Tallini M (2002) Idrodinamica sotterranea del massiccio del Gran Sasso (Abruzzo): indagini idrologiche, idrogeologiche e idrochimiche (1994–2001). Boll Soc Geol D’It 121:343–363

    Google Scholar 

  • Petitta M, Tallini M (2003) Groundwater resources and human impacts in a Quaternary intramontane basin (L’Aquila Plain, Central Italy). Water Int 28:57–69

    Article  Google Scholar 

  • Petitta M, Scarascia Mugnozza G, Barbieri M, Bianchi Fasani G, Esposito C (2010) Hydrodynamic and isotopic investigations for evaluating the mechanisms and amount of groundwater seepage through a rockslide dam. Hydrol Process 24:3510–3520. doi:10.1002/hyp.7773

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040

    Article  Google Scholar 

  • Plummer LN, Sprinckle CL (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan Aquifer, Florida, USA. Hydrogeol J 9:127–150

    Article  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2—water systems at 5 to 60 °C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216

    Article  Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2009) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47:361–369. doi:10.1111/j.1745-6584.2008.00509.x

    Article  Google Scholar 

  • Quinn JJ, Tomasko D, Kuiper JA (2006) Modeling complex flow in a karst aquifer. Sed Geol 184:343–351

    Article  Google Scholar 

  • Reichert J, Borg G (2008) Numerical simulation and geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geol Rev 33:134–151

    Article  Google Scholar 

  • Rozanski K, Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. AGU Geophys Monogr 78:1–37

    Google Scholar 

  • Savoy L, Surbeck H, Hunkeler D (2011) Radon and CO2 as natural tracers to investigate the recharge dynamics of karst aquifers. J Hydrol 406:148–157

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Scozzafava M, Tallini M (2001) Net infiltration in the Gran Sasso Massif (Central Italy): thornthwaite water budget using the CN method (Soil Conservation Service). Hydrogeol J 9:461–475

    Article  Google Scholar 

  • Sidle WC, Cvetic V (2011) Stable water isotope climate archives in springs from the Olympic Mountains, Washington. Environ Earth Sci 62:569–580. doi:10.1007/s12665-010-0548-9

    Article  Google Scholar 

  • Tallini M, Gasbarri D, Ranalli D, Scozzafava M (2006) Investigating the epikarst by low frequency GPR: an example from Gran Sasso range (Central Italy). Bull Eng Geol Environ 65:435–443

    Article  Google Scholar 

  • Tallini M, Parisse B, Petitta M, Spizzico M (2013) Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water-rock interaction in the Gran Sasso (central Italy) carbonate aquifer. Hydrogeol J 21:1447–1467. doi:10.1007/s10040-013-1023-y

    Article  Google Scholar 

  • Uliana MM, Sharp JM Jr (2001) Tracing regional flow paths to major springs in Trans-Pecos Texas using geochemical data and geochemical models. Chem Geol 179:53–72

    Article  Google Scholar 

  • Wang Y, Ma T, Lou Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246:223–234

    Article  Google Scholar 

  • Wang Y, Guo Q, Su C, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328:592–603

    Article  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford Univ. Press, New York

    Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Wu JK, Ding Y, Ye B, Yang Q, Zhang X, Wang J (2010) Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China. Environ Earth Sci 61:1123–1134. doi:10.1007/s12665-009-0432-7

    Article  Google Scholar 

  • Yager RM, Plummer LN, Kauffman LJ, Doctor DH, Nelms DL, Schlosser P (2013) Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: shenandoah Valley of Virginia and West Virginia, USA. Hydrogeol J 21:1193–1217

    Article  Google Scholar 

  • Yeh HF, Lee CH, Hsu KC (2011) Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: a case study from the Chih-Pen Creek basin, Taiwan. Environ Earth Sci 62:393–402. doi:10.1007/s12665-010-0534-2

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous reviewers for the valuable suggestions that improved the final version of the paper and Michele Spizzico and Donato Sciannamblo for the hydrochemical data of Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Tallini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallini, M., Adinolfi Falcone, R., Carucci, V. et al. Isotope hydrology and geochemical modeling: new insights into the recharge processes and water–rock interactions of a fissured carbonate aquifer (Gran Sasso, central Italy). Environ Earth Sci 72, 4957–4971 (2014). https://doi.org/10.1007/s12665-014-3364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3364-9

Keywords

Navigation