Skip to main content
Log in

Sunflower (Helianthus annuus): phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

On an uranium-mining-influenced area, sunflowers (Helianthus annuus) were grown on a small-scaled plot. Subsamples of sunflowers were harvested 34, 66, 96, 108, 140, and 170 days after sowing. Contents of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Th, U, Zn, and rare earth elements (REEs, La–Lu) were determined in the sunflower shoots, as well as total and bioavailable contents of these 25 elements in the soil taken on the day of sowing and after the last harvest. Shoot contents alone were not sufficient to evaluate the extraction capacity of the sunflowers. Instead total extracted masses (product of biomass and element content) had to be calculated. The total extracted mass increased for most of the elements until 140 days after sowing. Bioconcentration factors (BCFs) as ratio between element content in shoot and soil, were calculated for this time to evaluate the phytoextraction efficiency. BCFs ≥1 (relating total soil contents) and thus a very effective extraction was calculated for Cd. The BCFs, based on mobile soil contents, were ≥1 for all elements, except for U and REEs (La–Lu). Consequently, the sunflower is able to extract many elements effectively from the direct harmful soil fraction. To reduce the contents of Cd and Ni down to levels, where the mining-influenced area could be classified as arable land would require 55 and 207 sunflower growth cycles. Although this is quite a long time, the uranium-mining-influenced area could be successively remediated, while growing biofuel crops, without interfering with food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adesodun J, Atayese M, Agbaje T, Osadiaye B, Mafe O, Soretire A (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Poll 207:195–201

    Article  Google Scholar 

  • Alaru M, Kukk L, Olt J, Menind A, Lauk R, Vollmer E, Astover A (2011) Lignin content and briquette quality of different fibre hemp plant types and energy sunflower. Field Crops Res 124:332–339

    Article  Google Scholar 

  • Ashraf M, Ozturk M, Sajid M (eds) (2010) Plant adaption and phytoremediation. Springer, Dordrecht

  • BBodSchG (1998) Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz) vom 17. März 1998 (BGBl. I S. 502), das zuletzt durch Artikel 5 Absatz 30 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist http://www.gesetze-im-internet.de/bundesrecht/bbodschg/gesamt.pdf, accessed 11/27/2013

  • BBodSchV (1999) Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999 (BGBl. I S. 1554), geändert durch durch Artikel 16 des Gesetzes vom 31. Juli 2009 (BGBl. I S. 2585) geändert. http://www.gesetze-im-internet.de/bundesrecht/bbodschv/gesamt.pdf, accessed 11/27/2013

  • Berglund DR (2007) Sunflower Production. North Dakota State University, Fargo

    Google Scholar 

  • Bissinger V, Kolditz O (2008) Helmholtz interdisciplinary graduate school for environmental research (HIGRADE). GAIA 17:71–73

    Google Scholar 

  • Blume HP, Brümmer G, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM (eds) (2010) Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Carlsson E, Büchel G (2005) Screening of residual contamination at a former uranium heap leaching site, Thuringia, Germany. Chem Erde S1(65):75–95

    Article  Google Scholar 

  • Croghan C, Egeghy P (2003) Methods of dealing with values below limit of detection using SAS. Presented at Southern SAS User Group, St Petersburg, FL, September 22–24. http://analytics.ncsu.edu/sesug/2003/SD08-Croghan.pdf, accessed 05/29/2013

  • Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation 12:562–573

    Article  Google Scholar 

  • Ernst WO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde S1(65):29–42

    Article  Google Scholar 

  • Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of residual contamination in glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia, Germany. Chem Erde S2(69):5–19

    Article  Google Scholar 

  • Gunes A, Inal A, Kadioglu Y (2009) Determination of mineral element concentrations in wheat, sunflower, chickpea and lentil cultivars in response to P fertilization by polarized energy dispersive X-ray fluorescence. X-Ray Spectrom 38:451–462

    Article  Google Scholar 

  • Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manag 19:144–149

    Article  Google Scholar 

  • Hao X-Z, Zhou D-M, Li DD, Jiang P (2012) Growth, Cadmium and Zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedosphere 22:631–639

    Article  Google Scholar 

  • Herrero EM, López-Gonzálvez A, Ruiz MA, Lucas-García JA, Barbas C (2003) Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annuus grown in contaminated soils. Int J Phytoremediation 5:153–167

    Article  Google Scholar 

  • Ho C-P, Hseu Z-H, Chen N-C, Tsai C–C (2013) Evaluating heavy metal concentration of plants on a serpentine site for phytoremediation applications. Environ Earth Sci 70:191–199

    Article  Google Scholar 

  • Jakubick AT, Gatzweiler R, Mager D, Robertson AM (1997) The WISMUT waste rock pile remediation programme ot the Ronneburg district. Proceedings of the 4th International Conference on Acid Mine Drainage, pp 1285–1301

  • January M, Cutright TJ, Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    Article  Google Scholar 

  • Kennedy V, Sanchez A, Oughton DH, Rowland A (1997) Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122:89R–100R

    Article  Google Scholar 

  • Lee I, Baek K, Kim H, Kim S, Kim J, Kwon Y, Chang Y, Bae B (2007) Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J Environ Sci Health Part A 42:2039–2045

    Article  Google Scholar 

  • Lotfy S, Mostafa A (2013) Phytoremediation of contaminated soil with cobalt and chromium. J Geochem Explor. http://dx.doi.org/10.1016/j.gexplo.2013.07.003

  • Madéjon J, Murillo J, Marañón T, Cabrera F, Soriano M (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Sci Tot Environ 307:239–257

    Article  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Bioch 45:379–387

    Article  Google Scholar 

  • Mirgorodsky D, Ollivier D, Merten D, Bergmann H, Büchel G, Willscher S, Wittig J, Jablonski L, Werner P (2010a) Maßnahmen zur Strahlenschutzvorsorge radioaktiv belasteter Großflächen durch Sanierung mittels Phytoremediation und anschließende Verwertung der belasteten Pflanzenreststoffe (PHYTOREST). ATW Int J Nuc Power 12:774–778

    Google Scholar 

  • Mirgorodsky D, Ollivier D, Merten D, Büchel G, Willscher S, Jablonski L, Wittig J, Werner P (2010b) Phytoremediation experiments on a slightly contaminated test field of a former uranium mining site. In: Wolkersdorfer C, Freund A (eds) Mine water and innovative thinking. CBU Press, Sydney, pp 587–591

    Google Scholar 

  • Mortvedt JJ (1995) Heavy metal contaminants in inorganic and organic fertilizers. Fertil Res 43:55–61

    Article  Google Scholar 

  • Murillo JM, Marañón T, Cabrera F, López R (1999) Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill. Sci Total Environ 242:281–292

    Article  Google Scholar 

  • Mursec B, Vindis P, Janzekovic M, Brus M, Cus F (2009) Analysis of different substrates for processing into biogas. J Achievements Mat M 37:652–659

    Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  • Nehnevajova E, Herzig G, Federer Rand, Erismann KH, Schwitzguébel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediation 7:337–349

    Article  Google Scholar 

  • Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59:315–323

    Article  Google Scholar 

  • Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ Earth Sci 62:639–644

    Article  Google Scholar 

  • Padmavathiamma P, Li L (2009) Phytoremediation of metal-contaminated soil in temperate humid regions of British Columbia, Canada. Int J Phytoremediation 11:575–590

    Article  Google Scholar 

  • Park S, Kim KS, Kang D, Yoon H, Sung K (2013) Effects of humic acid on heavy metal uptake by herbaceous plants in soils simultaneously contaminated by petroleum hydrocarbons. Environ Earth Sci 68:2375–2384

    Article  Google Scholar 

  • Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavailab 10:61–75

    Article  Google Scholar 

  • Ruiz E, Rodríguez L, Alonso-Azcárate J, Rincón J (2009) Phytoextraction of metal polluted soils aroung a Pb-Zn mine by crop plants. Int J Phytoremediation 11:360–384

    Article  Google Scholar 

  • Runge W, Wolf F (eds) (2006) Chronik der WISMUT. WISMUT GmbH

  • Sachs L, Hedderich J (2009) Angewandte Statistik—Methodensammlung mit R. Springer, Berlin

    Google Scholar 

  • Singh A, Prasad S (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214

    Article  Google Scholar 

  • Sung M, Lee CY, Lee SZ (2011) Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. J Hazard Mater 190:744–754

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Usman A, Mohamed H (2009) Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 76:893–899

    Article  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett 8:1–7

    Article  Google Scholar 

  • Kötschau A, Büchel G, Einax JW, Mirgorodsky D, Meißner R, von Tümpling W, Merten D (2014) Element contents in roots and shoots of sunflower (Helianthus annuus): prediction versus measuring (submitted to Chem Erde, in review)

  • Zeien H, Brümmer GW (1989) Ermittlung der Mobilität und Bindungsformen von Schwermetallen in Böden mittels sequentieller Extraktion. Mitteilgn Dtsch Bodenkundl Gesellsch 59:505–510

    Google Scholar 

  • Zhou J, Yang Q, Lan C, Ye Z (2010) Heavy metal uptake and extraction potential of two Bechmeria nivea (L.) Gaud. (Ramie) carieties associated with chemical reagents. Water Air Soil Pollut 211:359–366

    Article  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by Helmholtz Impulse and Networking Fund through Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE) (Bissinger and Kolditz 2008). Digestions of soil and plant samples were carried out by Gerit Weinzierl, Ines Kamp, and Ulrike Buhler. Sequential soil extraction was carried out by Ulrike Buhler. Measurement with ICP-MS and ICP-OES were carried out by Dirk Merten and Ines Kamp, respectively. Our special thanks are adressed to the reviewers, who helped to improve the current article by their remarks, questions, and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anika Kötschau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kötschau, A., Büchel, G., Einax, J.W. et al. Sunflower (Helianthus annuus): phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environ Earth Sci 72, 2023–2031 (2014). https://doi.org/10.1007/s12665-014-3111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3111-2

Keywords

Navigation