Skip to main content
Log in

Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Historical mining dumps are useful archives for the investigation of weathering processes. The objective of this study was to investigate the weathering behavior of waste-rock material derived from the 800-year-old silver ore mining in Freiberg, Germany. For identifying time-dependent weathering indices, dumped material of four dumps of different ages and corresponding rock was examined regarding the geochemical composition. The dumped material is characterized by high contents of heavy metal containing sulfidic ores, such as pyrite, arsenopyrite, sphalerite and galena. Acid mine drainage is produced by the oxidative weathering of the sulfide minerals and causes the increased dissolving of soluble metals with increasing age of dumps. As a result of these weathering processes, a clear depletion of chalcophile elements in the older dump material (800 years) compared to the youngest dump (100 years) was observed. In the soil horizons downstream the dumps, high quantities of heavy metals (e.g., up to 12,000 ppm As, 3,300 ppm Pb, 640 ppm Zn), mainly adsorbed on organic matter, were determined and indicate a time-dependent element transfer from the dumps into their surrounding soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akoto O, Ephrain JH, Darco G (2008) Heavy metals pollution in surface soils in the vicinity of abundant railway servicing workshop in Kumasi, Ghana. Int J Environ Res 2(4):359–364

    Google Scholar 

  • Aleksander-Kwaterczak U, Ciszewski D (2012) Groundwater hydrochemistry and soil pollution in a catchment affected by an abandoned lead–zinc mine: functioning of a diffuse pollution source. Environ Earth Sci 65:1179–1189

    Article  Google Scholar 

  • Anderson SP, Dietrich WE, Brimhall GH (2002) Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geol Soc Am Bull 114:1143–1158

    Google Scholar 

  • Asta M, Ayora C, Román-Ross G et al (2010) Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem Geol 271:1–12

    Article  Google Scholar 

  • Baake D (2000) Geochemisches Verhalten umweltrelevanter Elemente in stillgelegten Polysulfiderzgruben am Beispiel der Grube “Himmelfahrt” in Freiberg/Sachsen. Dissertation, TU Bergakademie Freiberg

  • Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke, Stuttgart

    Google Scholar 

  • Beak Consultants GmbH (1997) Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten, Untersuchungsgebiet UG 20a/2 Freiberg. Report to GRS

  • Beckhoff B, Kanngießer B, Langhoff N et al (2006) Handbook of practical X-ray fluorescence analysis. Springer, Berlin

    Book  Google Scholar 

  • Benvenuti M, Mascaro I, Corsini F et al (1995) Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano southern Tuscany, Italy. Environ Geol 30:238–243

    Article  Google Scholar 

  • Bernstein KH (1985) Geologischer Lehrpfad Freiberg. VEB Geol Forschung und Erkundung Freiberg

  • Beuge P, Dunger C, Mibus J, Starke R (1998) Untersuchungen gewässerrelevanter Einflüsse von Bergbauhalden in Abhängigkeit von der Standzeit—Teilprojekt 1. Report 02WA9366/1, TU Bergakademie Freiberg

  • Böhmer A (1999) Ökologische Bewertung des Einflusses von Erzbergbauhalden im Freiberger Bergbaurevier auf ihre Umgebung unter Berücksichtigung der landwirtschaftlichen Nutzung. Diploma thesis, TU Dresden

  • Boulet MP, Larocque ACL (1998) A comparative mineralogical and geochemical study of sulfide mine tailings at two sites in New Mexico, USA. Environ Geol 33:30–142

    Article  Google Scholar 

  • Brümmer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernährung-Bodenkunde 149

  • Brüschke K (2001) Herkunft, Migrationsformen und Verbleib von Haupt- und Spurenelementen in Sicker- und Porenwässern des ehemaligen Braunkohletagebaus Zwenkau/Cospuden. Dissertation, Georg-August-University of Goettingen

  • Cappuyns V, Swennen R, Vandamme A, Niclaes M (2006) Environmental impact of the former Pb–Zn mining and smelting in East Belgium. J Geochem Explor 88:6–9

    Article  Google Scholar 

  • Date AR, Gray AL (1985) Determination of trace elements in geological samples by inductively coupled plasma source mass spectrometry. Spectrochim Acta 40B:115–122

    Google Scholar 

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55

    Article  Google Scholar 

  • Fiedler HJ, Hofmann W (1976) Standortskundlicher Exkursionsführer “Tharandt—Grillenburger Wald”. Department of Forest Sciences, TU Dresden

  • Fiedler HJ, Thalheim K, Hofmann W et al (1990) Chemische Zusammensetzung von Böden über unterschiedlichen Grundgesteinen des Osterzgebirges. Chem Erde 50:269–277

    Google Scholar 

  • Franke K (2003) Radioanalytische Untersuchung von geochemischen Barrieren für toxische und radiotoxische Stoffe im Bereich von Altbergbauhalden. Dissertation, University of Leipzig

  • Franke K, Rößler D, Gottschalch U, Kupsch H (2000) Mobilization and retardation of uranium DOC species at three mine piles in Schlema/Alberoda, Saxony, Germany. Isotopes Environ Health Stud 36:223–239

    Article  Google Scholar 

  • Göhler Y (1999) Boden, Vegetation und Blattspiegelwerte auf Erzbergbauhalden bei Freiberg in Sachsen. Diploma thesis, FH for Forestry, Schwarzburg

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc, London, pp 655–673

  • Graham GE, Kelley KD (2009) The Drench water deposit, Alaska: an example of a natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn–Pb–Ag deposit. Appl Geochem 24:232–245

    Article  Google Scholar 

  • Hämmann M, Desaules A (2003) Handbuch: Probenahme und Probenvorbereitung für Schadstoffuntersuchungen in Böden. Federal Office for the Environment (BUWAL)

  • Havlova V, Laciok A, Vopálka D, Andrlík M (2006) Geochemical study of uranium mobility in tertiary argillaceous system at rupprechtov site, Czech Republic. Czechoslov J of Phys 56

  • Jambor JL (1994) Mineralogy of sulfide-rich tailings and their oxidation products. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine waste, 22. Mineralogical Association of Canada, Nepean, pp 59–102

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Kardel K, Rank G, Pälchen W (1996) Geochemischer Atlas des Freistaates Sachsen, Teil 1: Spurenelement-gehalte in Gesteinen. Sächsisches Landesamt für Umwelt und Geologie

  • Keskin T, Toptas S (2012) Heavy metal pollution in the surrounding ore deposits and mining activity: a case study from Koyulhisar (Sivas-Turkey). Environ Earth Sci (online). doi:10.1007/s12665-012-1541-2

  • Klinger T (1995) Mengen- und Spurenelemente in Waldböden über unterschiedlichen Grundgesteinen des Osterzgebirges. Dissertation, TU Dresden

  • Kördel W, Dassenakis M, Lintelmann J, Padberg S (1997) The importance of natural organic material for environmental processes in water and soils. Pure Appl Chem 69:1571–1600

    Article  Google Scholar 

  • Kupsch H, Scheinert M, Franke K, Schreck P (2004) Verwitterungsverhalten von Bergbaurückständen in einer mittelalterlichen Schlackehalde im Erzgebirge. Z Angew Geol 51(2):61–65

    Google Scholar 

  • LABO (Bund-Länder-Arbeitsgemeinschaft Bodenschutz) (2003) Hintergrund- und Referenzwerte für Böden-Sachsen. http://www.labo-deutschland.de/documents//LABO-HGW-Anhang_340.pdf

  • Lewandowski J, Leitschuh S, Koß V (1997) Schadstoffe im Boden—Eine Einführung in Analytik und Bewertung. Springer, Berlin

    Book  Google Scholar 

  • Lide D (1992) CRC handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Liu J, Yu JW, Neretnieks I (1996) Transport modeling in the natural analogue study of the Cigar Lake uranium deposit (Saskatchewan, Canada). J Contam Hydrol 21:19–34

    Article  Google Scholar 

  • Manning TJ, Grow WR (1997) Inductively coupled plasma-atomic emission spectrometry. The chemical educator 2/1. Springer, New York

    Google Scholar 

  • Marescotti P, Azzali E, Servida D et al (2010) Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environ Earth Sci 61:187–199

    Article  Google Scholar 

  • Martin M, Beuge P, Kluge A, Hoppe T (1994) Grubenwässer des Erzgebirges—Quellen von Schwermetallen in der Elbe. Spektrum der Wiss pp 102–107

  • Mason B, Moore CB (1985) Grundzüge der Geochemie. Enke, Stuttgart

    Google Scholar 

  • Matschullat J, Tobschall HJ, Voigt HJ (eds) (1997) Geochemie und Umwelt—Relevante Prozesse in Atmo-, Pedo- und Hydrosphäre. Springer, Berlin

    Google Scholar 

  • Merkel BJ (2006) Long term fate of uranium tailings in mountain areas. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment: mining impact and consequences. Springer, Berlin

    Chapter  Google Scholar 

  • Möller D, Horváth L (1988) Estimation of natural acidity of precipitation water on global scale. Idöjaras 93:324–335

    Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2(3):108–118

    Google Scholar 

  • Müller G (1981) Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflüsse—Eine Be-standsaufnahme. Chem Ztg 105:157–164

    Google Scholar 

  • Müller C (1999) Stoffbestand des Bodens—Einträge, Austräge auf landwirtschaftlichen Flächen am Beispiel Schwermetalle, In: Bodenschutz und Altlastensanierung, Marktredwitzer Bodenschutztage, 27–29 Oct 1999, Marktredwitz

  • Müller N (2008) Georadiochemische Untersuchungen zur Wechselwirkung und Verteilung von Tracerelementen zwischen Mineralien und NOM-Spezies im Kupferschiefer. Dissertation, University of Leipzig

  • Müller N, Franke K, Schreck P et al (2008) Georadiochemical evidence to weathering of mining residues of the Mansfeld mining district, Germany. Environ Geol 54:869–877

    Article  Google Scholar 

  • Munendra S, Muller G, Singh B (2002) Heavy metals in freshly deposited stream sediments of rivers associated with urbanization of the Ganga plain, India. Water Air Soil Poll 141:35–54

    Article  Google Scholar 

  • Nava-Martínez EC, Flores-García E, Espinoza-Gomez H, Wakida FT (2012) Heavy metals pollution in the soil of an irregular urban settlement built on a former dumpsite in the city of Tijuana, Mexico. Environ Earth Sci 66:1239–1245

    Article  Google Scholar 

  • Oberfranken (2001) Probenahme bei Bauschutt und Erdaushub (Haufwerksbeprobung). Instructional material supplied by the Government of Upper Franconia, Bayreuth

  • Ossenkopf P, Pälchen W, Barth N, Rank G, Kardel K (1993) Geogene Belastung der Böden im Raum Freiberg mit Schwermetallen und Arsen. Sächsisches Landesamt für Umwelt und Geologie, Freiberg

  • Pälchen W, Rank G, Lange H, Tischendorf G (1987) Regionale Clarkewerte-Möglichkeiten und Grenzen ihrer Anwendung am Beispiel des Erzgebirges (DDR). Chem Erde 47:1–17

    Google Scholar 

  • Reimer L (1985) Scanning electron microscopy: physics of image formation and microanalysis. Springer, Berlin

    Google Scholar 

  • Salminen R, Batista MJ, Bidovec M et al (2005) Geochemical Atlas of Europe. Part 1. Background information, methodology and maps. Geological Survey of Finland, Espoo

  • Scheffer F, Schachtschabel P (2010) Lehrbuch der Bodenkunde. Springer, Heidelberg

    Google Scholar 

  • Scheinert M (2007) Georadiochemische Untersuchungen zur Wechselwirkung und Verteilung von NOM-Spezies der Lanthaniden und chalkophilen Schwermetalle im Bereich historischer Bergbauhalden. Dissertation, University of Leipzig

  • Scheinert M, Kupsch H, Bletz B (2009) Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany). Chem Erde 69(1):81–90

    Article  Google Scholar 

  • Scherchan O (1980) Methodische Untersuchungen zur geochemischen Bilanz zwischen Muttergestein, Böden und Umweltbelastung in der Umgebung Freiberg. Dissertation, TU Bergakademie Freiberg

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123

    Article  Google Scholar 

  • Smuda J, Dold B, Friese K, Morgenstern P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92:97–110

    Article  Google Scholar 

  • Steuer H (1993) Bergbau auf Silber und Kupfer im Mittelalter. In: Steuer H, Zimmermann U (eds) Alter Bergbau in Deutschland, Stuttgart, pp 75–91

  • Strosnider WHJ, López FSL, Nairn RW (2011) Acid mine drainage at Cerro Rico de Potosí I: unabated high-strength discharges reflect a five century legacy of mining. Environ Earth Sci 64:899–910

    Article  Google Scholar 

  • Taylor MP, Mackay AK, Hudson-Edwards KA, Holz E (2010) Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: potential sources and risks to human health. Appl Geochem 25:841–855

    Article  Google Scholar 

  • Tichomirowa M, Heidel C, Junghans M et al (2010) Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997–2008) in the region of Freiberg, central-eastern Germany. Chem Geol 276:104–118

    Article  Google Scholar 

  • TK10 (2010) Topographic map 1:10,000, sheet 5046-SW Freiberg, © Staatsbetrieb Geobasisinformation und Vermessung Sachsen

  • Ullrich SM, Ramsey MH, Helios-Rybicka E (2000) Total and exchangeable of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. App Geochem 14:187–196

    Article  Google Scholar 

  • Vaughan BJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge

    Google Scholar 

  • Wagenbreth O, Wächtler E (1986) Der Freiberger Bergbau: Technische Denkmale und Geschichte. Deutscher Verlag für Grundstoffindustrie, 1 edn, Leipzig

  • Wakida FT, Lara D, Temores-Pená J et al (2008) Heavy metals in sediments of the Tecate River. Environ Geol 54:637–642

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Google Scholar 

  • Wolf BM (1999) Mobilisierung und Migration von anthropogen eingetragenem Uran und Thorium in ehemaligen Bergbaugebieten in Thüringen und Sachsen. Dissertation, University of Mainz

  • Schmidt-Hammel T (undated) Übersicht über die Bodentypen des Ost-Erzgebirges. http://www.vychodnikrusnohori.org/uploads/media/17_Boden_farbig.pdf

  • Ziechmann W, Müller-Wegener U (1990) Bodenchemie. BI Wissenschafts, Mannheim

    Google Scholar 

Download references

Acknowledgments

The author thanks all colleagues from the HZDR (formerly IIF) and the University of Leipzig for the support during the doctoral and subsequent scientific work. Thanks to the reviewers, R. Kryza and O. Kolditz, for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stockmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockmann, M., Hirsch, D., Lippmann-Pipke, J. et al. Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environ Earth Sci 68, 1153–1168 (2013). https://doi.org/10.1007/s12665-012-1817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1817-6

Keywords

Navigation