Skip to main content

Advertisement

Log in

The IWAS-ToolBox: Software coupling for an integrated water resources management

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Numerical modeling of interacting flow and transport processes between different hydrological compartments, such as the atmosphere/land surface/vegetation/soil/groundwater systems, is essential for understanding the comprehensive processes, especially if quantity and quality of water resources are in acute danger, like e.g. in semi-arid areas and regions with environmental contaminations. The computational models used for system and scenario analysis in the framework of an integrated water resources management are rapidly developing instruments. In particular, advances in computational mathematics have revolutionized the variety and the nature of the problems that can be addressed by environmental scientists and engineers. It is certainly true that for each hydro-compartment, there exists many excellent simulation codes, but traditionally their development has been isolated within the different disciplines. A new generation of coupled tools based on the profound scientific background is needed for integrated modeling of hydrosystems. The objective of the IWAS-ToolBox is to develop innovative methods to combine and extend existing modeling software to address coupled processes in the hydrosphere, especially for the analysis of hydrological systems in sensitive regions. This involves, e.g. the provision of models for the prediction of water availability, water quality and/or the ecological situation under changing natural and socio-economic boundary conditions such as climate change, land use or population growth in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anderson MG, Burt TP (1985) Modelling strategies. Hydrological forecasting. Wiley, New York, pp 1–13

    Google Scholar 

  • Barry DA, Prommer H, Miller CT, Engesgaard P, Brun A, Zhen C (2002) Modelling the fate of oxidisable organic contaminants in groundwater. Adv Water Resour 25:945–983

    Article  Google Scholar 

  • Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:1–14

    Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Bhallamudi SM, Panday S, Huyakorn PS (2003) Sub-timing in fluid flow and transport simulations. Adv Water Resour 26:477–489

    Article  Google Scholar 

  • Blumensaat F, Wolfram M, Krebs P (2011) Sewer model development under minimum data requirements. Environ Earth Sci. doi:10.1007/s12665-011-1146-1 (this issue)

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin, p 414

    Book  Google Scholar 

  • Brun A, Engesgaard P (2002) Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development. J Hydrol 256:211–227

    Article  Google Scholar 

  • Centler F, Shao H, De Biase C, Park C-H, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput Geosci 36:397–405

    Article  Google Scholar 

  • Chaudhry MH (1993) Open-channel flow. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Cirpka OA, Valocchi AJ (2007) Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour 30:1668–1679

    Article  Google Scholar 

  • Cirpka OA, Valocchi AJ (2009) Reply to comments on “Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state” by H. Shao et al. Adv Water Resour 32(2):298–301

    Article  Google Scholar 

  • Clement TP, Sun Y, Hooker BS, Petersen JN (1998) Modeling multispecies reactive transport in ground water. Ground Water Monitor Remediation 18:79–92

    Article  Google Scholar 

  • De Bruijn R (1995) TDEM analysis of the Eastern Batinah. Hydrogeology Section Ministry of Water Resources, November 1995

  • De Jong van Lier Q, van Dam JC, Metselaar K, de Jong R, Duijnisveld WHM (2008) Macroscopic root water uptake distribution using a matric flux potential approach. Vadose Zone J 7:1065–1078

  • Delfs J-O, Blumensaat F, Wang W, Krebs P, Kolditz O (2011) Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci. doi:10.1007/s12665-011-1285-4 (this issue)

  • DHI Water and Environment (2009) MIKE SHE. Hørsholm, Denmark

    Google Scholar 

  • Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944

    Article  Google Scholar 

  • Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: II—modelling of water transfer in the soil root-system with explicit account of flow within the root system—comparison with experiments. Plant Soil 283(1–2):99–117

    Article  Google Scholar 

  • Elder JW (1967) Transient convection in a porous medium. J Fluid Mech 27(3):609–623

    Article  Google Scholar 

  • Ertel A-M, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova O, Berendonk T, Petzoldt T (2011) Heavy load and high potential. Anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi:10.1007/s12665-011-1289-0 (this issue)

  • Fennema RJ, Chaudhry MH (1990) Explicit methods for two-dimensional unsteady free-surface flows. J Hydrol Eng ASCE 116(8):1013–1034

    Article  Google Scholar 

  • Forsyth PA, Wu YS, Pruess K (1995) Robust numerical methods for saturated–unsaturated flow with dry initial conditions in heterogeneous media. Adv Water Resour 18:25–38

    Article  Google Scholar 

  • Freeze RA, Harlan RL (1969) Blueprint for a physically-based, digitally-simulated hydrologic response model. J Hydrol 9:237–258

    Article  Google Scholar 

  • Frind EO (1982) Simulation of long-term transient density-dependent transport in groundwater. Adv Water Resour 5:73–97

    Article  Google Scholar 

  • Glover RE (1978) Transient ground water hydraulics. Monograph. Water Resources Publications, Fort Collins

    Google Scholar 

  • Gottardi G, Venutelli M (1993) A control-volume finite-element model for two-dimensional overland flow. Adv Water Resour 16:277–284

    Article  Google Scholar 

  • Grundmann J, Schütze N, Schmitz G-H, Al Shaqsi S (2011) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci. doi:10.1007/s12665-011-1253-z (this issue)

  • Hartwig M, Theuring P, Rode M, Borchardt D (2011) Sources of suspended sediments and its implications on ecosystem functions in the Kharaa River (Mongolia). Environ Earth Sci. doi:10.1007/s12665-011-1198-2 (this issue)

  • Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers. US Geol Surv Water Supply Pap 1613-C:C71–C84

    Google Scholar 

  • Herbert AW, Jackson CP, Lever DA (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent on concentration. Water Resour Res 24(10):1781–1795

    Article  Google Scholar 

  • Horlemann L, Dombrowsky I (2011) Institutionalizing IWRM in developing and transition countries—the case of Mongolia. Environ Earth Sci. doi:10.1007/s12665-011-1213-7 (this issue)

  • Huyakorn PS, Pinder GF (1983) Computational methods in subsurface flow. Academic Press, London

    Google Scholar 

  • Huyakorn PS, Springer SP, Guvanasen V, Wadsworth TD (1986) A three dimensional finite element model for simulating water flow in variably saturated porous media. Water Resour Res 22:1790–1808

    Article  Google Scholar 

  • HydroGeoLogic Inc (2006) MODHMS: a comprehensive MODFLOW-based hydrologic modeling system, version 3.0. HydroGeoLogic Incorporated, Herndon

    Google Scholar 

  • Javandel I, Doughty C, Tsang CF (1984) Groundwater transport: handbook of mathematical models. American Geophysical Union, Washington, DC

  • Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1089

    Article  Google Scholar 

  • Jourabchi P, Van Cappellen P, Regnier P (2005) Quantitative interpretation of pH distributions in aquatic sediments: a reactive transport modeling approach. Am J Sci 305:919–956

    Article  Google Scholar 

  • Kalbacher T, Wang W, Kolditz O, Taniguchi T (2008) Parallelization concepts and applications for THM coupled finite element problems. J Environ Sci Sustain Soc 2:35–46

    Article  Google Scholar 

  • Kalbacher T, Schneider CL, Wang W, Hildebrandt A, Attinger S, Kolditz O (2011) Parallelized modelling of soil-coupled 3D water uptake of multiple root systems with automatic adaptive time step control. Vadose Zone J 10:727–735 doi:10.2136/vzj2010.0099

    Google Scholar 

  • Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011) IWAS—integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci. doi:10.1007/s12665-011-1330-3 (this issue)

  • Karypis G, Kumar V (1998) A parallel algorithm for multi-level graph partitioning and sparse matrix ordering. J Parallel Distrib Comput 48(1):71–95

    Article  Google Scholar 

  • Kizilova N (2004) Computational approach to optimal transport network construction in biomechanics. Lect Notes Comput Sci 3044:476–485

    Article  Google Scholar 

  • Kizilova N (2011) Optimal transport networks in nature. Series in mathematical biology and medicine, vol 10. World Scientific Publishing, Singapore

    Google Scholar 

  • Kolditz O, Delfs JO, Bürger CM, Beinhorn M, Park C-H (2008) Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach. J Hydroinformatics 10(3):227–244

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958

    Article  Google Scholar 

  • Lakey R, Easton P, AI Hinai H (1995) Eastern Batinah resource assessment. Numerical modeling stage 1: data collation and analysis. Ministry of Water Resources, September 1995

  • Leidel M, Niemann S, Hagemann N (2011) Capacity development as key factor for integrated water resources management (IWRM)—improving water management in the Western Bug River Basin, Ukraine. Environ Earth Sci. doi:10.1007/s12665-011-1223-5 (this issue)

  • Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel FH, Gaffron A, Hebben N, Höfer R, Makesching F, Neder K, Roig LH, Steiniger B, Strauch M, Walde D, Weiß H, Worch E, Wummel J (2011) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil—climate, land use and water resources. Environ Earth Sci. doi:10.1007/s12665-011-1219-1 (this issue)

  • Markstrom SL, Niswonger RG, Regan RS, Prudic DE, Barlow PM (2008) GSFLOW: coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular GroundWater Flow Model (MODFLOW-2005). US Geological Survey Techniques and Methods 6–D1

  • Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174

    Article  Google Scholar 

  • McDermott CI, Walsh R, Mettier R, Kosakowski G, Kolditz O (2009) Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput Geosci 13(3):349–361

    Article  Google Scholar 

  • Meysman JR, Middelburg JJ, Herman PMJ, Heip CHR (2003) Reactive transport in surface sediments I. Model complexity and software quality. Comput Geosci 29:291–300

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Murphy EM, Ginn TR (2000) Modeling microbial processes in porous media. Hydrogeol J 8:142–158

    Article  Google Scholar 

  • Oldenburg CM, Pruess K (1995) Dispersive transport dynamics in a strongly coupled groundwater–brine flow system. Water Resour Res 31(2):289–302

    Article  Google Scholar 

  • Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, Bot JL (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119

    Article  Google Scholar 

  • Panday S, Huyakorn PS, Therrien R, Nichols RL (1993) Improved three-dimensional finite-element techniques for field simulation of variably saturated flow and transport. J Contam Hydrol 12:3–33

    Article  Google Scholar 

  • Paniconi C, Marrocu M, Putti M, Verbunt M (2003) Newtonian nudging for a Richards equation-based distributed hydrological model. Adv Water Resour 26(2):161–178

    Article  Google Scholar 

  • Park C-H, Mustafa MA (2007) Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations. J Contam Hydrol 92(1–2):33–49

    Article  Google Scholar 

  • Pavlik D, Söhl D, Pluntke T, Mykhnovych A, Bernhofer C (2011) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci. doi:10.1007/s12665-011-1081-1 (this issue)

  • Pfingsten W (1996) Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium. Nuclear Technol 116(2):208–221

    Google Scholar 

  • Pfletschinger H, Engelhardt I, Piepenbrink M, Königer F, Schuhmann R, Kallioras A, Schüth C (2011) Soil column experiments to quantify vadose zone water fluxes in arid settings. Environ Earth Sci. doi:10.1007/s12665-011-1257-8 (this issue)

  • Prommer H, Barry DA, Zheng C (2003) Modflow/mt3dms-based reactive multicomponent transport modeling. Ground Water 41:247–257

    Article  Google Scholar 

  • Regnier P, O’Kane J, Steefel C, Vanderborght J (2002) Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Appl Math Model 26:913–927

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  Google Scholar 

  • Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ Earth Sci. doi:10.1007/s12665-011-1230-6 (this issue)

  • Rossman LA (2007) Storm water management model user’s manual, EPA/600/R-05/040. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Samaniego L, Kumar R, Jackisch C (2010) Predictions in a data-sparse region using a regionalized grid-based hydrologic model driven by remotely sensed data. Hydrol Res (accepted for publication)

  • Schäfer D, Schäfer W, Kinzelbach W (1998) Simulation of reactive processes related to biodegradation in aquifers: 1 Structure of the three-dimensional reactive transport model. J Contam Hydrol 31:167–186

    Article  Google Scholar 

  • Schaffranek RW, Baltzer RA, Goldberg DE (1981) A model for simulation of flow in singular and interconnected channels. Techniques of water-resources investigations of the US geological survey. Book 7:110p

    Google Scholar 

  • Schanze J, Trümper J, Burmeister C, Pavlik D, Kruhlov I (2011) A methodology for dealing with regional change in integrated water resources management. Environ Earth Sci. doi:10.1007/s12665-011-1311-6 (this issue)

  • Scheifhacken N, Haase U, Gram-Radu L, Kozovyi R, Berendonk T (2011) The comparison and suitability of assessment methods to identify the hydro-morphological status of a transboundary river in the Ukraine. Environ Earth Sci. doi:10.1007/s12665-011-1218-2 (this issue)

  • Schneider CL, Attinger S, Delfs JO, Hildebrandt A (2010) Implementing small scale processes at the soil–plant interface—the role of root architectures for calculating root water uptake profiles. Hydrol Earth Syst Sci 14:279–289

    Article  Google Scholar 

  • Schütze N, Kloss S, Lennartz F, Bakri A, Schmitz GH (2011) Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty. Environ Earth Sci. doi:10.1007/s12665-011-1135-4 (this issue)

  • Shao H, Centler F, De Biase C, Thullner M, Kolditz O (2009) Comments on two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state by O.A. Cirpka, A.J. Valocchi. Adv Water Resour 32(2):293–297

    Article  Google Scholar 

  • Sigel K, Altantuul K, Basandorj D (2011) Household needs and demand for improved water supply and sanitation in peri-urban areas: the case of Darkhan, Mongolia. Environ Earth Sci. doi:10.1007/s12665-011-1221-7 (this issue)

  • Singh V (1996) Kinematic wave modeling of overland flow on a plane: numerical solutions. In: Kinematic wave modeling in water resources: surface-water hydrology, chap 14. Wiley, New York

    Google Scholar 

  • Singh V, Bhallamudi SM (1997) Hydrodynamic modeling of basin irrigation. J Irrig Drain Eng ASCE 123(6):407–414

    Article  Google Scholar 

  • Smith RE, Goodrich DC, Quinton JN (1995) Dynamic, distributed simulation of watershed erosion: the KINEROS2 and EUROSEM models. J Soil Water Conserv 50(5):517–520

    Google Scholar 

  • Tavares Wahren F, Tarasiuk M, Mykhnovych A, Kit M, Feger KH, Schwärzel K (2011) Estimation of spatially distributed soil information. Dealing with data shortages in the Western Bug Basin, Ukraine. Environ Earth Sci. doi:10.1007/s12665-011-1197-3 (this issue)

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2005) HydroGeoSphere: a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Groundwater Simulation Group, University of Waterloo, Waterloo, ON, Canada, p 322

    Google Scholar 

  • Thullner M, Regnier P, Van Cappellen P (2007) Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions. Geomicrobiol J 24:139–155

    Article  Google Scholar 

  • Van Cappellen P, Gaillard JF (1996) Biogeochemical dynamics in aquatic sediments. Rev Mineral 34:335–376

    Google Scholar 

  • van Genuchten MTh, Wierenga PJ (1976) Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci Soc Am J 40(4):473–480

    Article  Google Scholar 

  • Vasyukova E, Uhl W, Braga, F, Neder K (2011) Challenges of drinking water production from surface water sources in Brasília DF, Brazil. Environ Earth Sci. doi:10.1007/s12665-011-1308-1 (this issue)

  • Vetter S, Schaffrath D, Bernhofer C (2011) Spatial Simulation of evapotranspiration of semi-arid Inner Mongolian grassland based on MODIS and eddy covariance data. Environ Earth Sci. doi:10.1007/s12665-011-1187-5 (this issue)

  • Vrugt JA, van Wijk MT, Hopmans JW, Simunek J (2001) One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour Res 37(10):2457–2470

    Article  Google Scholar 

  • Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8):1631–1641

    Article  Google Scholar 

  • Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS, a kinematic runoff and erosion model, documentation and user manual. USDA-Agricultural Research Service ARS-77

  • Zhang W, Cundy TW (1989) Modeling of two-dimensional overland flow. Water Resour Res 25(9):2019–2035

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Federal Ministry for Education and Research (BMBF) in the framework of the project “IWAS—International Water Research Alliance Saxony” (Grant 02WM1027 and 02WM1028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kalbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalbacher, T., Delfs, JO., Shao, H. et al. The IWAS-ToolBox: Software coupling for an integrated water resources management. Environ Earth Sci 65, 1367–1380 (2012). https://doi.org/10.1007/s12665-011-1270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1270-y

Keywords

Navigation