Skip to main content
Log in

Three-dimensional temporally dependent dispersion through porous media: analytical solution

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A three-dimensional model for non-reactive solute transport in physically homogeneous subsurface porous media is presented. The model involves solution of the advection-dispersion equation, which additionally considered temporally dependent dispersion. The model also account for a uniform flow field, first-order decay which is inversely proportional to the dispersion coefficient and retardation factor. Porous media with semi-infinite domain is considered. Initially, the space domain is not solute free. Analytical solutions are obtained for uniform and varying pulse-type input source conditions. The governing solute transport equation is solved analytically by employing Laplace transformation technique (LTT). The solutions are illustrated and the behavior of solute transport may be observed for different values of retardation factor, for which simpler models that account for solute adsorption through a retardation factor may yield a misleading assessment of solute transport in ‘‘hydrologically sensitive’’ subsurface environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Niami ANS, Rushton KR (1977) Analysis of flow against dispersion in porous media. J Hydrol 33:87–97

    Article  Google Scholar 

  • Aral MM, Liao B (1996) Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J Hydrol Eng 1(1):20–32

    Article  Google Scholar 

  • Banks, Robert B, Jerasate S (1962) Dispersion in unsteady porous media flow. J Hydraul Div HY3:1–21

    Google Scholar 

  • Batu V (1987) Introduction of the stream function concept to the analysis of hydrodynamic dispersion in porous media. Water Resour Res 23(7):1175–1184

    Article  Google Scholar 

  • Bruch JC (1970) Two dimensional dispersion experiments in a porous medium. Water Resour Res 6:791–800

    Article  Google Scholar 

  • Chen JS, Liu CW, Liao CM (2003) Two-dimensional Laplace-transformed power series solution for solute transport in a radially convergent flow field. Adv Water Resour 26:1113–1124

    Article  Google Scholar 

  • Chrysikopoulos CV, Voudrias EA, Fyrillas MM (1994) Modeling of contaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media. Transp Porous Med 16:125–145

    Article  Google Scholar 

  • Cirpka OA, Valocchi AJ (2009) Reply to comments on “Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state” by H. Shao et al. Adv Water Resour 32(2):298–301

    Article  Google Scholar 

  • Costa CP, Vilhena MT, Moreira DM, Tirabassi T (2006) Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer. Atmos Environ 40:5659–5669

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford Univ Press, London

    Google Scholar 

  • Diersch HJ, Prochnow D, Thiele M (1984) Finite-element analysis of dispersion––affected saltwater upconing below a pumping well. Appl Math Model 8(5):305–312

    Article  Google Scholar 

  • Gershon ND, Nir A (1969) Effects of boundary conditions of models on tracer distribution in flow through porous mediums. Water Resour Res 5(4):830–839

    Article  Google Scholar 

  • Harleman DRF, Rumer RR (1963) Longitudinal and lateral dispersion in an isotropic porous medium. J Fluid Mech 16(3):385–394

    Article  Google Scholar 

  • Jaiswal DK, Kumar A, Kumar N, Yadava RR (2009) Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one dimensional semi-infinite media. J Hydro Environ Res 2:254–263

    Article  Google Scholar 

  • Kim KY, Kim T, Kim Y, Woo NC (2007) A semi-analytical solution for groundwater responses to stream-stage variations and tidal fluctuations in a coastal aquifer. Hydrol Process 21:665–674

    Article  Google Scholar 

  • Kumar A, Jaiswal DK, Kumar N (2010) Analytical solutions to one-dimensional advection-diffusion with variable coefficients in semi-infinite media. J Hydrol 380(3–4):330–337

    Article  Google Scholar 

  • Lapidus L, Amundson NR (1952) Mathematics of adsorption in beds, VI. The effects of longitudinal diffusion in ion-exchange and chromatographic columns. J Phys Chem 56:984–988

    Article  Google Scholar 

  • Liao B, Aral MM (2000) Semi-analytical solution of two-dimensional sharp interface LNAPL transport models. J Contam Hydrol 44:203–221

    Article  Google Scholar 

  • Lin SH (1977) Non-linear adsorption in porous media with variable porosity. J Hydrol 35:235–243

    Article  Google Scholar 

  • Lin JS, Hildemann LM (1996) Analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities. Atmos Environ 30(2):239–254

    Article  Google Scholar 

  • Liu SH, Liedl R, Grathwohl P (2010) Simple analytical solutions for oxygen transfer into anaerobic groundwater, Water Resources Research Volume: 46 Article Number: W10542 Published: OCT 29 2010

  • Moreira DM, Vilhena MT, Buske DE, Tirabassi T (2006) The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL. Atmos Environ 40:3186–3194

    Article  Google Scholar 

  • Ogata A, Banks RB (1961) A solution of differential equation of longitudinal dispersion in porous media. US Geol Surv Prof Pap 411:A1–A7

    Google Scholar 

  • Shao H, Centler F, Biase CD, Thullner M, Kolditz O (2009) Comments on “Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady-state” by OA Cirpka and AJ Valocchi. Adv Water Resour 32(2):293–297

    Article  Google Scholar 

  • Sirin H (2006) Ground water contaminant transport by nondivergence-free, unsteady and nonstationary velocity fields. J Hydrol 330:564–572

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  • Tracy FT (1995) 1-D, 2-D, and 3-D analytical solutions of unsaturated flow in groundwater. J Hydrol 170:199–214

    Article  Google Scholar 

  • van Genuchten M Th, Alves WJ (1982) Analytical solutions of one dimensional convective-dispersive solute transport equations, United State Dept. of Agriculture, Technical Bulletin No. 1661

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Wiley, New York, pp 56–57

    Google Scholar 

  • Zoppou C, Knight JH (1999) Analytical solution of a spatially variable coefficient advection-diffusion equation in up to three dimensions. Appl Math Model 23:667–685

    Article  Google Scholar 

Download references

Acknowledgments

This study is a part of a postdoctoral fellowship of the author Dilip Kumar Jaiswal and gratefully acknowledges the financial assistance in the form of UGC, Dr. D. S. Kothari Postdoctoral Fellowship, New Delhi, India. In particular, we thank the editor-in-chief and the reviewers for their critical and detailed suggestions that helped to improve this manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. R. Yadav or Dilip Kumar Jaiswal.

Appendix

Appendix

The conditions (12–13) in terms of new space (η) and time (T) variables may be written as

$$ c\left( {\eta ,T} \right) = C_{i} ,\,\eta \ge 0,\,T = 0, $$
(19)
$$ c\left( {\eta ,T} \right) = \left\{ {\begin{array}{*{20}c} {C_{0} ,\,0 < T \le T_{0} } \\ {0, \,T > T_{0} } \\ \end{array} } \right., \eta = 0 $$
(20)
$$ \frac{\partial c}{\partial \eta } = 0,\,\eta \to \infty ,T \ge 0 $$
(21)

Now, introducing a new dependent variable by the following transformation

$$ c\left( {\eta ,T} \right) = K\left( {\eta ,T} \right)exp\left[ {\frac{{U_{0} }}{{2D_{0} }}\eta - \left\{ {\frac{{U_{0}^{2} }}{{4D_{0} }} + \gamma_{0} } \right\}T/R} \right] $$
(22)

The set of Eqs. 1921 and 11 reduced to

$$ R\frac{\partial K}{\partial T} = D_{0} \frac{{\partial^{2} K}}{{\partial \eta^{2} }} $$
(23)
$$ K\left( {\eta ,T} \right) = C_{i} exp\left( { - \frac{{U_{0} }}{{2D_{0} }}\eta } \right),\,\eta \ge 0,\,T = 0, $$
(24)
$$ K\left( {\eta ,T} \right) = \left\{ {\begin{array}{*{20}c} {C_{0 } \;exp\left( {\alpha^{2} T} \right), \quad 0 < T \le T_{0} } \\ {0,\quad T > T_{0} } \\ \end{array} } \right., \eta = 0;\,\alpha^{2} = \left\{ {\frac{{u_{0}^{2} }}{{4D_{0} }} + \gamma_{0} } \right\} $$
(25)
$$ \frac{\partial K}{\partial \eta } = 0,\,\eta \to \infty ,\,T \ge 0 $$
(26)

Applying Laplace transformation on Eqs. 2326, we have

$$ Rp\overline{K} - RC_{i} exp\left( { - \frac{{U_{0} }}{{2D_{0} }}\eta } \right) = D_{0} \frac{{d^{2} \overline{K} }}{{d\eta^{2} }} $$
(27)
$$ \overline{K} \left( {\eta ,p} \right) = \frac{{c_{0 } }}{{\left( {p - \alpha^{2} } \right)}}\left[ {1 - exp\left\{ { - \left( {p - \alpha^{2} } \right)T_{0} } \right\}} \right], \quad\eta = 0 $$
(28)
$$ \frac{{\partial \overline{K} }}{\partial \eta } = 0,\quad\eta \to \infty $$
(29)

Thus, the general solution of Eq. 27 may be written as

$$ \overline{K} \left( {\eta ,p} \right) = C_{1} exp \left( {- \eta \sqrt {\frac{Rp}{{D_{0} }}} } \right) + C_{2} exp\left( {\eta \sqrt {\frac{Rp}{{D_{0} }}} } \right) + \frac{{C_{i} exp\left( { - \frac{{U_{0} }}{{2D_{0} }}\eta } \right)}}{{\left( {p - \beta^{2} /R} \right)}},\,\beta^{2} = \frac{{U_{0}^{2} }}{{4D_{0} }} $$
(30)

Using condition 2829 on the above solution, we get

$$ C_{1} = \frac{{C_{0 } }}{{\left( {p - \alpha^{2} } \right)}}\left[ {1 - exp\left\{ { - \left( {p - \alpha^{2} } \right)T_{0} } \right\}} \right] - \frac{{C_{i} }}{{\left( {p - \beta^{2} /R} \right)}} \,{\text{and}}\,C_{2} = 0. $$

Thus, the particular solution in the Laplacian domain may be written as

$$ \begin{aligned} \overline{K} \left( {\eta ,p} \right) & = \frac{{C_{0 } }}{{\left( {p - \alpha^{2} } \right)}}\left[ {1 - exp\left\{ { - \left( {p - \alpha^{2} } \right)T_{0} } \right\}} \right]exp( - \eta \sqrt {Rp/D_{0} } ) \\ & - \frac{{C_{i} }}{{\left( {p - \frac{{\beta^{2} }}{R}} \right)}}exp( - \eta \sqrt {Rp/D_{0} } ) + \frac{{C_{i} exp\left( { - \frac{{U_{0} }}{{2D_{0} }}\eta } \right)}}{{\left( {p - \beta^{2} /R} \right)}} \\ \end{aligned} $$
(31)

Taking inverse Laplace transform of 31, the solution of advection-dispersion solute transport for uniform pulse-type input condition may be written in terms of \( c(x,y,z,T) \) by using Eqs. 22, 10, 8 and 6.

Similarly, Eq. 15 reduces by applying the transformations 6, 8, 10 and 22

$$ - D_{0} \frac{\partial K}{\partial \eta } + \frac{U_0 }{2}K = \left\{ \begin{aligned} U_{0} C_{0 }\exp( {\alpha^{2} T} ), & 0 < T \le T_{0} \\ 0, & T > T_{0} \\\end{aligned} \right.,\,\eta = 0 $$
(32)

Applying Laplace transformation on Eq. 32, we may get

$$ - D_{0} \frac{{d\overline{K} }}{d\eta } + \frac{{U_{0 } }}{2}\overline{K} = \frac{{U_{0 } C_{0 } }}{{\left( {p - \alpha^{2} } \right)}}\left[ {1 - exp\left\{ { - \left( {p - \alpha^{2} } \right)T_{0} } \right\}} \right] $$
(33)

Now using input condition 33 in place of 28 in the general solution 30, we get

$$ C_{1} = \frac{{U_{0 } C_{0 } }}{{\sqrt {D_{0} } \left( {p - \alpha^{2} } \right)\left( {\sqrt p + \alpha } \right)}}\left[ {1 - exp\left\{ { - \left( {p - \alpha^{2} } \right)T_{0} } \right\}} \right] + \frac{{C_{i} }}{{\sqrt {D_{0} } \left( {p - \beta^{2} /R} \right)\left( {\sqrt p + \alpha } \right)}} $$
(34)

Thus, the particular solution in the Laplacian domain may be written as

$$ \begin{aligned} \overline{K} \left( {\eta ,p} \right) & = \frac{{U_{0 } C_{0 } }}{{\sqrt {D_{0} } \left( {p - \alpha^{2} } \right)\left( {\sqrt p + \alpha } \right)}}\left[ {1 - exp\left\{ { - \left( {p - \alpha^{2} } \right)T_{0} } \right\}} \right]exp\left( { - \eta \sqrt {\frac{Rp}{{D_{0} }}} } \right) \\ & - \frac{{C_{i } }}{{\sqrt {D_{0} } \left( {p - \beta^{2} /R} \right)\left( {\sqrt p + \alpha } \right)}}exp\left( { - \eta \sqrt {\frac{Rp}{{D_{0} }}} } \right) + \frac{{C_{i} exp\left( { - \frac{{U_{0} }}{{2D_{0} }}\eta } \right)}}{{\sqrt {D_{0} } \left( {p - \beta^{2} /R} \right)\left( {\sqrt p + \alpha } \right)}} \\ \end{aligned} $$
(35)

Taking inverse Laplace transform of 35, the solution of advection-dispersion solute transport for varying input conditions may be written in terms of \( c(x,y,z,T) \) by using Eqs. 22, 10, 8 and 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, R.R., Jaiswal, D.K., Yadav, H.K. et al. Three-dimensional temporally dependent dispersion through porous media: analytical solution. Environ Earth Sci 65, 849–859 (2012). https://doi.org/10.1007/s12665-011-1129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1129-2

Keywords

Navigation