Skip to main content
Log in

Salt damage and microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The necropolis of Carmona (Seville, Spain) is one of the most significant Roman burial sites in southern Spain used during the first and second centuries ad. Of its more than 600 tombs, the Postumius Tomb is one of the best examples of a tomb affected by severe salt damage. To define safe microclimatic conditions for its conservation, environmental parameters were recorded from June 2007 to April 2009, both inside and outside the tomb, and mineralogical, textural, petrophysical, and durability characterization studies of the host-rock were made. Experimental tests revealed a high susceptibility to salt deterioration of a host-rock (calcarenite) with low mechanical properties and a complex porous medium that favors salt weathering, water condensation, and capillary rise. The analysis of the weathered material showed the presence chiefly of gypsum (CaSO4·2H2O), thenardite (Na2SO4) and halite (NaCl) in the tomb of Postumius, with alteration that was more intensive in spring and autumn, and less so during summer months. Salt damage activity was calculated by quantifying the number of transitions of crystallization–dissolution of saline phases. The calculated seasonality for water condensation and salt damage is coeval. The host-rock alteration is in accord with the estimated salt decay, and was more intensive in spring and autumn and less so during summer. The seasonality of halite transitions is similar to that of the sodium sulfate system, which suggests that salt weathering is produced by the two types of salts. By combining different methodological approaches (pore structure, water condensation, salt and environmental conditions), it is possible to explain why salt crystallization occurs in a tomb with hygrometric conditions that are not suitable for this process to occur. These methodological approaches are also used to other rock-decaying processes, such as the development of microorganisms, clay swelling and calcite dissolution by NaCl- and CO2-rich pore waters, and can be used to predict safe threshold microclimatic conditions that minimize all rock-decaying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akatova E (2009) Estudio comparativo de las comunidades microbianas en las tumbas de la Necropolis de Carmona basado en técnicas de biología molecular. Dissertation, University of Seville, Spain

  • Anon (1999a) Natural stone test methods. Determination of compressive strength, EN-1926

  • Anon (1999b) Natural stone test methods. Determination of resistance to salt crystallization, EN-12370

  • Ariño X, Saiz-Jimenez C (1997) Deterioration of the Elephant tomb (Necropolis of Carmona, Seville, Spain). Int Biodeterior Biodegrad 40:233–239

    Article  Google Scholar 

  • Benavente D, del Garcia-Cura MA, Garcia-Guinea J, Sanchez-Moral S, Ordoñez S (2004) The role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544

    Article  Google Scholar 

  • Benavente D, Cueto N, Martinez-Martinez J, Garcia-del-Cura MA, Cañaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:197–206

    Article  Google Scholar 

  • Benavente D, Brimblecombe P, Grossi CM (2008) Salt weathering and climate change. In Colombini MP, Tassi L (eds) New trends in analytical, environmental and cultural heritage chemistry, Transworld Research Network, Kerala, India, pp 277–286

  • Benavente D, Cañaveras JC, Cuezva S, Laiz L, Sanchez-Moral S (2009) Experimental definition of microclimatic conditions based on water transfer and porous media properties for conservation of prehistoric constructions: Cueva Pintada at Galdar, Gran Canaria, Spain. Environ Geol 56:1495–1504

    Article  Google Scholar 

  • Bionda D (2006) Modelling indoor climate and salt behaviour in historical buildings: a case study. Dissertation, ETH Zurich. doi:10.3929/ethz-a-005188136

  • Brimblecombe P, Grossi CM (2007) Damage to buildings from future climate and pollution. APT Bull 38:13–18

    Google Scholar 

  • Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol Climatol 20:1527–1532

    Article  Google Scholar 

  • Cardell C, Benavente D, Rodriguez-Gordillo J (2008) Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Mater Charact 59:1371–1385

    Article  Google Scholar 

  • Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:207–220

    Article  Google Scholar 

  • Dreybrodt W, Gabrovsek F, Perne M (2005) Condensation corrosion: a theoretical approach. Acta Carsol 34:317–348

    Google Scholar 

  • Dublyansky VN, Dublyansky YV (2000) The role of condensation in karst hydrogeology and speleogenesis. In: Klimchouk A, Ford DC, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Florida, pp 100–111

    Google Scholar 

  • Espinosa-Marzal RM, Scherer GW (2008a) Study of the pore clogging induced by salt crystallization in Indiana limestone. In: Proceedings of the 11th international congress on deterioration and conservation of stone. Nicolaus Copernicus University Press, Torun, pp 81–88

  • Espinosa-Marzal RM, Scherer GW (2008b) Study of sodium sulfate salts crystallization in limestone. Environ Geol 56:605–621

    Article  Google Scholar 

  • Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt crystallization. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present-day challenges for the preservation of the past, vol 331. Special Publications, Geological Society of London, London, pp 61–77

    Google Scholar 

  • Everett DH (1961) Thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:1541

    Article  Google Scholar 

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454

    Article  Google Scholar 

  • Franzen C, Mirwald PW (2009) Moisture sorption behaviour of salt mixtures in porous stone. Chemie der Erde-Geochem 69:91–98

    Article  Google Scholar 

  • Gonzalez-Delgado JA, Civis J, Dabrio CJ, Goy JL, Ledesma S, Pais J, Sierro FJ, Zazo C (2004) Cuenca del Guadalquivir. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 543–550

    Google Scholar 

  • Grossi CM, Brimblecombe P, Harris I (2007) Predicting long term freeze–thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci Tot Environ 377:273–281

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P, Menéndez B, Benavente D, Harris I, Déque M. Climatology of salt damage on stone buildings. Sci Total Environ (submitted)

  • Heyrman J, Balcaen A, Rodriguez-Diaz M, Logan NA, Swings J, De Vos P (2003) Bacillus decolorationis sp. nov., isolated from biodeteriorated parts of the mural paintings at the Servilia tomb (Roman Necropolis of Carmona, Spain) and the Saint-Catherine Chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 53:459–463

    Article  Google Scholar 

  • Hoyos M, Sanchez-Moral S, Sanz Rubio E, Cañaveras JC (1999) Causas y mecanismos de deterioro de los materiales pétreos del pavimento del conjunto arqueológico de Baelo Claudia, Cádiz/España. Mater Constr 49:5–18

    Article  Google Scholar 

  • Imperi F, Caneva G, Cancellieri L, Ricci MA, Sodo A, Visca P (2007) The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ Microbiol 9:2894–2902

    Article  Google Scholar 

  • ISRM (1981) Rock characterisation. Testing and monitoring. ISRM suggested methods. In: Brown ET (ed) Commission on testing and monitoring. International Society for Rock Mechanics, Pergamon Press

    Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. Research in conservation. The Getty Conservation Institute, California

    Google Scholar 

  • Laiz L, Miller AZ, Jurado V, Akatova E, Sanchez-Moral S, Gonzalez JM et al (2009) Isolation of five Rubrobacter strains from biodeteriorated monuments. Naturwissenschaften 96:71–79

    Article  Google Scholar 

  • Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity- and temperature-controlled X-ray diffraction. Anal Chem 78:4683–4689

    Article  Google Scholar 

  • Martin JD (2004) Using X-powder: a software package for powder X-ray diffraction analysis, Version 2004.03. http://www.xpowder.com, p 105, Spain (L.GR1001/04.ISBN84-609-1497-6)

  • Martínez-Martínez J (2008) Influencia de la alteración sobre las propiedades mecánicas de calizas, dolomías y mármoles. Evaluación mediante estimadores no destructivos (ultrasonidos). Dissertation, University of Alicante, Spain

  • Martínez-Martínez J, Benavente D, del García-Cura MA (2007) Pérdida del pulido de diferentes mármoles comerciales en ambientes salinos. Macla 7:92

    Google Scholar 

  • Millero FJ, Milne PJ, Thurmond VL (1984) The solubility of calcite, strontianite and witherite in NaCl solutions at 25°C. Geochim Cosmochim Acta 48:1141–1143

    Article  Google Scholar 

  • Piñar G, Saiz-Jimenez C, Schabereiter-Gurtner C, Blanco-Varela MT, Lubitz W, Rölleke S (2001) Archaeal communities in two disparate deteriorated ancient wall paintings: detection, identification and temporal monitoring by DGGE. FEMS Microbiol Ecol 37:45–54

    Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landforms 24:191–209

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534

    Article  Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Jimenez-Lopez C, Rodriguez-Navarro C (2009) An atomic force microscopy study of calcite dissolution in saline solutions: the role of magnesium ions. Geochim Cosmochim Acta 73:3201–3217

    Article  Google Scholar 

  • Sanchez-Moral S, Soler V, Canaveras JC, Sanz-Rubio E, Van Grieken R, Gysels K (1999) Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors. Sci Tot Environ 244:67–84

    Article  Google Scholar 

  • Schabereiter-Gurtner C, Piñar G, Vybiral D, Lubitz W, Rölleke S (2001) Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings. Arch Microbiol 176:347–354

    Article  Google Scholar 

  • Scherer GW (2004) Stress from crystallisation of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  • Sebastian E, Cultrone G, Benavente D, Linares L, Elert K, Rodriguez-Navarro C (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cult Herit 9:66–76

    Article  Google Scholar 

  • Šmerda J, Sedláček I, Páčová Z, Krejčí E, Havel L (2006) Paenibacillus sepulcri sp. nov., isolated from biodeteriorated mural paintings in the Servilia tomb. Int J Syst Evol Microbiol 56:2341–2344

    Article  Google Scholar 

  • Steiger M (2005) Crystal growth in porous materials—II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  Google Scholar 

  • Zehnder K, Schoch O (2009) Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. J Cult Herit 10:319–330

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Consejeria de Cultura (project “Estudio integral del estado de conservación del Conjunto Arqueológico de Carmona”) and Consejeria de Innovación, Ciencia y Empresa (project P06-RNM-2318). All Carmona Archeological Complex staff members are acknowledged for their collaboration throughout the whole research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Benavente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benavente, D., Sanchez-Moral, S., Fernandez-Cortes, A. et al. Salt damage and microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain. Environ Earth Sci 63, 1529–1543 (2011). https://doi.org/10.1007/s12665-010-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0815-9

Keywords

Navigation