Skip to main content
Log in

Effekte eines Tanz- und eines Gesundheitssporttrainings auf die graue Hirnsubstanz gesunder Senioren

Effect of dancing and exercise training on the grey matter in the brain of healthy seniors

  • Hauptbeiträge
  • Published:
Sportwissenschaft Aims and scope Submit manuscript

Zusammenfassung

Der demografische Wandel und eine alternde Gesellschaft begründen eine verstärkte Forschung zu geriatrischen Problemen und Fragestellungen. Im Verlauf des Alterungsprozesses sind Volumenverluste der grauen Hirnsubstanz zu verzeichnen, welche oftmals in neurodegenerativen Erkrankungen münden. Sportliche und kognitive Interventionsmaßnahmen haben sich in der Vergangenheit als vielversprechende Methoden zur Neuroplastizität erwiesen, wobei eine Kombination aus beiden Maßnahmen am effektivsten scheint. Eine solche Kombination stellt aus unserer Sicht das Tanzen dar, welches konditionelle, koordinative und kognitive Inhalte verbindet. 26 gesunde Senioren (63–80 Jahre) wurden in eine Tanztrainingsgruppe (n = 14) und eine Gesundheitsportgruppe (n = 12) randomisiert. Nach 18-monatiger Trainingsintervention zeigten sich in der Tanzgruppe Volumenzunahmen in der grauen Substanz vor allem in frontalen und temporalen Regionen, u. a. im Gyrus parahippocampalis und Gyrus praecentralis. In der Gesundheitssportgruppe zeigten sich Volumenzunahmen in der grauen Substanz subkortikaler Regionen. Die Ergebnisse deuten an, dass ein Tanztraining einem Gesundheitssporttraining hinsichtlich der induzierten Neuroplastizität überlegen ist, da dabei Volumenzunahmen in Regionen zu verzeichnen sind, die mit höheren kognitiven Funktionen assoziiert werden. Wir vermuten, dass speziell die multimodale Leistungsstruktur des Tanzens, welche kognitive, koordinative und konditionelle Elemente enthält, dies begründen. Die Ergebnisse demonstrieren erstmalig in einer Längsschnittstudie die positiven Auswirkungen eines Tanztrainings bei der Prävention von Volumenverlust der grauen Substanz und neurodegenerativen Erkrankungen bei Senioren.

Abstract

Due to the demographic change and an aging society more research is nowadays dedicated to geriatric problems and questions. Aging is associated with a loss of grey matter volume in the brain and often leads to neurodegenerative diseases. Physical and cognitive activities have been shown to improve brain plasticity whereby the combination of both seems to be most effective. We hypothesized that dancing could be an ideal intervention because it combines exercise, cognitive, coordination and emotional features. In this study 26 healthy senior citizens (63–80 years old) were randomized into a dancing group (n = 14) or a physical exercise group (n = 12). After 18 months the dancing group showed increased grey matter volumes, especially in the frontal and temporal regions including the gyrus parahippocampalis and the precentral gyrus. The physical exercise group showed grey matter volume increases only in subcortical regions. Our results suggest that dancing is more effective in inducing neuroplasticity in regions normally affected by aging than classical repetitive fitness training. We assume this to be related to the multimodal nature of dancing, which combines exercise, cognitive and coordination features. These findings demonstrate for the first time in a longitudinal study the positive effects of dancing programs for the prevention of volume loss of grey matter and neurodegenerative diseases in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry - the methods. Neuroimage, 11(6), 805–821.

    Article  CAS  PubMed  Google Scholar 

  • Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., Cholerton, B. A., Plymate, S. R., Fishel, M. A., Watson, G. S., Duncan, G. E., Mehta, P. D., & Craft, S. (2010). Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(2), 569–579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bamadis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, M., Klados, M., Schlee, W., Siountas, A., & Papageorgiou, S. G. (2014). A review of physical and cognitive interventions in aging. Neuroscience and Biobehavioral Reviews, 44, 206–220. doi:10.1016/j.neubiorev.2014.03.019.

    Article  Google Scholar 

  • Bliss, T., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate of the aneasthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boecker, H., & Drzezga, A. (2015). A perspective on the future role of brain pet imaging in exercise science. Neuroimage doi:10.1016/j.neuroimage.2015.10.021.

    PubMed Central  Google Scholar 

  • Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. The Journal of Neuroscience, 28(28), 7031–7035.

    Article  CAS  PubMed  Google Scholar 

  • Brehm, W., Janke, A., Sygusch, R., & Wagner, P. (2006). Gesund durch Gesundheitssport. Weinheim München: Juventa.

    Google Scholar 

  • Brown, S., Martinez, M., & Parsons, M. (2006). The neuronal basis of human dance. Cerebral Cortex, 16(8), 1157–1167.

    Article  PubMed  Google Scholar 

  • Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375.

    Article  PubMed  Google Scholar 

  • Chavez, C. M., McGaugh, J. L., & Weinberger, N. M. (2009). The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex. Neurobiology of Learning and Memory, 91(4), 382–392. doi:10.1016/j.nlm.2008.10.010.

    Article  PubMed  Google Scholar 

  • Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E.,   Elavsky, S., Marquez, D.X., Hu, L. & Kramer A.F. (2006). Aerobic Exercise Training Increases Brain Volume in Aging Humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.

  • Dias, G. P., Cavegn, N., Nix, A., Do Nascimento, M. C., Stangl, D., Zainuddin, M. S. A., Nardi, A. E., Gardino, P. F., & Thuret, S. (2012). The Role of Dietary Polyphenols on Adult Hippocampal Neurogenesis: Molecular Mechanism and Behavioural Effects on Depression and Anxiety. Oxidative Medicine and Cellular Longevity doi:10.1155/2012/541971.

    PubMed Central  Google Scholar 

  • Draganski, B., Gaser, C., Kempermann, G., Kuhn, G. H., Winkler, J., Büchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. The Journal of Neuroscience, 26(23), 6314–6317.

    Article  CAS  PubMed  Google Scholar 

  • Driscoll, I., Davatzikos, C., An, Y., Wu, X., Shen, D., Kraut, M. & Resnick, S.M. (2009). Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology, 72(22), 1906–1913.

  • Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Hu, L., Morris, K.S., White, S.M., Wójcicki, T.R., McAuley, E. & Kramer, A.F. (2009). Aerobic fitness is associated with Hippocampal volume in elderly humans. Hippocampus, 19(10), 1030–1039.

  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022.

    Article  CAS  Google Scholar 

  • Erickson, K.I., Raji, C.A., Lopez, O.L., Becker, J.T., Rosano, C., Newman, A.B., Gach, M., Thompson, P.M., Ho, A.J. & Kuller, L.H. (2010). Physical activity predicts gray matter volume in late adulthood. The Cardiovascular Health Study. Neurology, 75 (16), 1415–1422.

  • Fink, G. R., Halligan, P. W., Marschall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382, 626–628.

    Article  CAS  PubMed  Google Scholar 

  • Fratiglioni, L., Paillard-Borg, S., & Windblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurology, 3(6), 343–353.

    Article  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & Mac Hugh, P. R. (1990). MMST: Mini-Mental-Status-Test. Weinheim: Beltz Test.

    Google Scholar 

  • Gandy, S. (2011). Prevention is better than cure. Nature, 475, 15.

    Article  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14, 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, S. M., Parker, B., & Thompson, P. D. (2012). Physical Activity, Cognitive Function, and Brain Health: What Is the Role of Exercise Training in the Prevention of Dementia? Brain Sciences, 2(4), 684–708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hänggi, J., Koeneke, S., Bezzola, L., & Jäncke, L. (2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31(8), 1196–1206.

    PubMed  Google Scholar 

  • Hautzinger, M., Bailer, M., Worall, H., & Keller, F. (1995). Beck-Depressions-Inventar (BDI): Testhandbuch (2. Aufl.). Bern: Hans Huber.

    Google Scholar 

  • Hayes, S. M., Hayes, J. P., Cadden, M., & Verfaellie, M. (2013). A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Frontiers in Aging Neuroscience, 5, 31. doi:10.3389/fnagi.2013.00031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzschneider, K., Wolbers, T., Roder, B., & Hötting, K. (2012). Cardiovascular fitness modulates brain activation associated with spatial learning. Neuroimage, 59 (3), 3003–3014.

  • Honea, R., Thomas, G., Harsha, A., Anderson, H., Brooks, W., & Burns, J. (2009). Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer’s disease. Alzheimer Disease & Associated Disorders, 23(3), 188–197.

    Article  Google Scholar 

  • Hutton, C., Draganski, B., Ashburner, J., & Weiskopf, N. (2009). A comparisonbetween voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage, 48(2), 371–380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hüfner, K., Binetti, C., Hamilton, D. A., Stephan, T., Flanagin, V. L., Linn, J., Labudda, K., Markowitsch, H., Glasauer, S., Jahn, K. & Brandt, T. (2011). Structural and functional Plasticity of the Hippocampal Formation in Professional Dancers and Slackliners. Hippocamus, 21 (8), 855–865.

  • Jack, C.R., Peterson, R.C., Xu, Y.C., Waring, S.C., O’Brien, P.C., Tangalos, E.G., Smith, G.E., Ivnik, R.J. & Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786–794.

  • Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., & Hesselink, J. R. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22(4), 581–594.

    Article  CAS  PubMed  Google Scholar 

  • Kattenstroth, J. C., Kalisch, T., Holt, S., Tegethoff, M., & Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in Aging Neuroscience, 5, 5. doi:10.3389/fnagi.2013.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karvonen, M. J. (1957). The effects of training on heart rate: a longitudinal study. Annales medicinae experimentalis et biologiae Fenniae, 35(3), 307–315.

    CAS  PubMed  Google Scholar 

  • Kempermann, G. (2015). Neurodegenerative Erkrankungen und zelluläre Plastizität als sportmedizinische Herausforderung. Deutsche Zeitschrift für Sportmedizin, 66, 31–35. doi:10.5960/dzsm.2015.163.

    Article  Google Scholar 

  • Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A., & Wolf, S. A. (2010). Why and how physical activity promotes experience-induced brain plasticity. Frontiers in Neuroscience, 4, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau, D. & Conway, A.R.A. (2013). Cognitive enhancement: a comparative review of computerized and athletics training programs. International Review of Sport and Exercise Psychology, 6 (1), 155–183, doi:10.1080/1750984X.2012.758763.

  • Murphy, T., Dias, G., & Thuret, S. (2014). Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plasticity, doi:10.1155/2014/563160.

    PubMed  PubMed Central  Google Scholar 

  • Niemann, C., Godde, B., & Voelcker-Rehage, C. (2014). Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Frontiers in Aging Neuroscience, 6, 170. doi:10.3389/fnagi.2014.00170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemann, C., Godde, B., Staudinger, U. M., & Voelcker-Rehage, C. (2014). Exercise-induced changes in basal ganglia volume and cognition in older adults. Neuroscience, 281, 147–163. doi:10.1016/j.neuroscience.2014.09.033.

    Article  CAS  PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.

    Article  PubMed  Google Scholar 

  • Rehfeld, K., Hökelmann, A., Lehmann, W., & Blaser, P. (2014). Auswirkungen einer Tanz- und einer Kraft-Ausdauer-Intervention auf kognitive Fähigkeiten älterer Menschen. Zeitschrift für Neuropsychologie, 25(2), 99–108.

    Article  Google Scholar 

  • Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. The Journal of Neuroscience, 23(8), 3295–3301.

    CAS  PubMed  Google Scholar 

  • Schnur, M. (2010). Wirkung von Ausdauerleistungstraining auf Amygdala und Vermis cerebelli bei Patienten mit Schizophrenie und gesunden Kontrollprobanden. Dissertation. Saarbrücken: Universität des Saarlandes.

    Google Scholar 

  • Sehm, B., Taubert, M., Conde, V., Weise, D., Classen, J., Dukart, J., Draganski, B., Villringer, A., & Ragert, P. (2014). Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiology of Aging, 35, 232–239.

    Article  PubMed  Google Scholar 

  • Smith, C. D., Chebrolu, H., Wekstein, D. R., Schmitt, F. A., & Markesbery, W. R. (2007). Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiology of Aging, 28, 1075–1087.

    Article  PubMed  Google Scholar 

  • Taki, Y., Goto, R., Evans, A., Zijdenbos, A., Neelin, P., Lerch, J., Sato, K., Ono, S., Kinomura, S., Nakagawa, M., Sugiura, M., Watanabe, J., Kawashima, R., & Fukuda, H. (2004). Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiology of Aging, 25, 455–463.

    Article  PubMed  Google Scholar 

  • Taubert, M., Draganski, B., Anwander, A., Muller, K., Horstmann, A., Villringer, A., & Ragert, P. (2010). Dynamic properties of human brain structure: learning related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670–11677.

    Article  CAS  PubMed  Google Scholar 

  • Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience and Biobehavioral Reviews, 37(9), 2268–2295.

    Article  PubMed  Google Scholar 

  • Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536. doi:10.1038/nn.3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Müller.

Ethics declarations

Interessenkonflikt

P. Müller, K. Rehfeld, A. Lüders, M. Schmicker, A. Hökelmann, J. Kaufman und N.G. Müller geben an, dass kein Interessenkonflikt besteht.

Die Studie wurde von der Ethikkommission der Otto-von-Guericke Universität Magdeburg genehmigt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, P., Rehfeld, K., Lüders, A. et al. Effekte eines Tanz- und eines Gesundheitssporttrainings auf die graue Hirnsubstanz gesunder Senioren. Sportwiss 46, 213–222 (2016). https://doi.org/10.1007/s12662-016-0411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12662-016-0411-6

Schlüsselwörter

Keywords

Navigation