Skip to main content

Advertisement

Log in

Erythropoietin gene doping: facts and fictions

Erythropoietin-Gen Doping: Fakten und Fiktionen

  • Essay
  • Published:
Sportwissenschaft Aims and scope Submit manuscript

Abstract

The substances and methods forbidden to increase the mass of hemoglobin (Hb) in sports (“blood doping”) include red blood cell (RBC) transfusion, Hb infusion, recombinant or chemical agents that stimulate the erythropoietin receptor, erythropoietin gene (EPO) transfer, and misuse of drugs activating endogenous EPO expression. The two latter possibilities are considered in this article. EPO transgenes have been explored in animal studies and in seminal human trials. However, the method is still not well engineered, despite almost 10 years of clinical studies. The menacing detriment of EPO transfer is immunogenicity of the transgenic DNA or cells and of the secreted recombinant proteins, respectively. However, since chemicals are available that activate EPO-controlling transcription factors, these compounds may also be misused in sports. The chemicals include inhibitors of GATA, which prevent GATA-2 from suppressing the EPO promoter, and stabilizers of the hypoxia-inducible transcription factors (HIFs), which activate the EPO enhancer. While there is a hope that EPO transfer has not yet entered the sports scene as a means of blood doping, drugs that increase endogenous EPO expression must be considered as a realistic threat with regard to doping efforts. In particular, there is suspicion that cobaltous salt, which is a potent stimulator of EPO when taken orally, could be misused by athletes.

Zusammenfassung

Die im Sport verbotenen Substanzen und Methoden zur Erhöhung der Hämoglobinmasse (“Blutdoping”) beinhalten Erythrozytentransfusionen, Hämoglobininfusionen, den Erythropoietinrezeptor aktivierende rekombinante oder chemische Arzneistoffe, den Transfer des Erythropoietingens (EPO) und EPO aktivierende Substanzen. Letztere zwei Methoden werden hier betrachtet. Der EPO-Transfer wurde bereits in Tierversuchen und ersten klinischen Studien erprobt, ist jedoch medizinisch nicht ausgereift. Vorrangiges Problem ist die Immunogenität der transgenen DNA bzw. Zellen und der rekombinanten Proteine. Es gibt jedoch kleinmolekulare Stoffe, welche auf die Transkriptionsfaktoren einwirken, die das endogene EPO kontrollieren. Da diese Chemikalien leicht erhältlich sind und oral eingenommen werden können, besteht die Gefahr, dass sie im Sport angewendet werden. Zu solchen Substanzen gehören Antagonisten von GATA, die den EPO-Promotor de-blockieren, und Stabilisatoren der Hypoxie induzierbaren Transkriptionsfaktoren (HIF), die den EPO-Enhancer aktivieren. Während die Hoffnung besteht, dass der direkte EPO-Transfer noch keinen Eingang in die Sportszene gefunden hat, stellen die chemischen Stoffe, die EPO induzieren, eine reale Gefahr dar. Dies gilt insbesondere für Kobaltsalze, die oral eingenommen werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baoutina, A., Coldham, T., Bains, G. S., & Emslie, K. R. (2010). Gene doping detection: Evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Therapy, 17(8), 1022–1032.

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew, A., Patil, S., Mackay, A., Nelson, M., Buyaner, D., Hardy, W., Mosca, J., Sturgeon, C., Siatskas, M., Mahmud, N., Ferrer, K., Deans, R., Moseley, A., Hoffman, R., & Devine, S. M. (2001). Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Human Gene Therapy, 12(12), 1527–1541.

    Article  PubMed  CAS  Google Scholar 

  • Beiter, T., Zimmermann, M., Fragasso, A., Armeanu, S., Lauer, U. M., Bitzer, M., Su, H., Young, W. L., Niess, A. M., & Simon, P. (2008). Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping. Exercise Immunology Review, 14, 73–85.

    PubMed  Google Scholar 

  • Beiter, T., Zimmermann, M., Fragasso, A., Hudemann, J., Niess, A. M., Bitzer, M., Lauer, U. M., & Simon, P. (2010). Direct and long-term detection of gene doping in conventional blood samples. Gene Therapy, 18(3), 225–231.

    Article  PubMed  Google Scholar 

  • Bernhardt, W. M., Wiesener, M. S., Scigalla, P., Chou, J., Schmieder, R. E., Gunzler, V., & Eckardt, K. U. (2010). Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. Journal of the American Society of Nephrology, 21(12), 2151–2156.

    Article  PubMed  CAS  Google Scholar 

  • Binley, K., Askham, Z., Iqball, S., Spearman, H., Martin, L., de Alwis, M., Thrasher, A. J., Ali, R. R., Maxwell, P. H., Kingsman, S., & Naylor, S. (2002). Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood, 100(7), 2406–2413.

    Article  PubMed  CAS  Google Scholar 

  • Bohl, D., Naffakh, N., & Heard, J. M. (1997). Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nature Medicine, 3(3), 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Chenuaud, P., Larcher, T., Rabinowitz, J. E., Provost, N., Cherel, Y., Casadevall, N., Samulski, R. J., & Moullier, P. (2004). Autoimmune anemia in macaques following erythropoietin gene therapy. Blood, 103(9), 3303–3304.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, J. R., Goode, G. C., Herrington, J., & Urdaneta, L. E. (1976). Possible cobalt toxicity in maintenance hemodialysis patients after treatment with cobaltous chloride: A study of blood and tissue cobalt concentrations in normal subjects and patients with terminal and renal failure. Clinical Nephrology, 5(2), 61–65.

    PubMed  CAS  Google Scholar 

  • Gao, G., Lebherz, C., Weiner, D. J., Grant, R., Calcedo, R., McCullough, B., Bagg, A., Zhang, Y., & Wilson, J. M. (2004). Erythropoietin gene therapy leads to autoimmune anemia in macaques. Blood, 103(9), 3300–3302.

    Article  PubMed  CAS  Google Scholar 

  • Imagawa, S., Matsumoto, K., Horie, M., Ohkoshi, N., Nagasawa, T., Doi, T., Suzuki, N., & Yamamoto, M. (2007). Does K-11706 enhance performance and why? International Journal of Sports Medicine, 28(11), 928–933.

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann, W. (2007). Control of erythropoietin gene expression and its use in medicine. Methods in Enzymology, 435(10), 179–197.

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann, W. (2009a). Erythropoiesis stimulating agents and techniques: A challenge for doping analysts. Current Medicinal Chemistry, 16(10), 1236–1247.

    Article  CAS  Google Scholar 

  • Jelkmann, W. (2009b). Efficacy of recombinant erythropoietins: Is there unity of international units? Nephrology Dialysis Transplantation, 24, 1366–1368.

    Article  CAS  Google Scholar 

  • Jelkmann, W., & Lundby, C. (2011). Blood doping and its detection. Blood, 118(9), 2395–2404.

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann, W., Pagel, H., Hellwig, T., & Fandrey, J. (1997). Effects of antioxidant vitamins on renal and hepatic erythropoietin production. Kidney International, 51(2), 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Lasne, F., Martin, L., de Ceaurriz, J., Larcher, T., Moullier, P., & Chenuaud, P. (2004). “Genetic doping” with erythropoietin cDNA in primate muscle is detectable. Molecular Therapy, 10(3), 409–410.

    Article  PubMed  CAS  Google Scholar 

  • Lippi, G., Franchini, M., & Guidi, G. C. (2006). Blood doping by cobalt. Should we measure cobalt in athletes? Journal of Occupational Medicine and Toxicology, 1, 18.

    Article  PubMed  Google Scholar 

  • Lippin, Y., Dranitzki-Elhalel, M., Brill-Almon, E., Mei-Zahav, C., Mizrachi, S., Liberman, Y., Iaina, A., Kaplan, E., Podjarny, E., Zeira, E., Harati, M., Casadevall, N., Shani, N., & Galun, E. (2005). Human erythropoietin gene therapy for patients with chronic renal failure. Blood, 106(7), 2280–2286.

    Article  PubMed  CAS  Google Scholar 

  • Menzel, O., Birraux, J., Wildhaber, B. E., Jond, C., Lasne, F., Habre, W., Trono, D., Nguyen, T. H., & Chardot, C. (2009). Biosafety in ex vivo gene therapy and conditional ablation of lentivirally transduced hepatocytes in nonhuman primates. Molecular Therapy, 17(10), 1754–1760.

    Article  PubMed  CAS  Google Scholar 

  • Nagel, S., Talbot, N. P., Mecinovic, J., Smith, T. G., Buchan, A. M., & Schofield, C. J. (2010). Therapeutic manipulation of the HIF hydroxylases. Antioxidants & Redox Signaling, 12(4), 481–501.

    Article  CAS  Google Scholar 

  • Nakano, Y., Imagawa, S., Matsumoto, K., Stockmann, C., Obara, N., Suzuki, N., Doi, T., Kodama, T., Takahashi, S., Nagasawa, T., & Yamamoto, M. (2004). Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity, and restores indicators in an in vivo mouse model of anemia of chronic disease. Blood, 104(13), 4300–4307.

    Article  PubMed  CAS  Google Scholar 

  • Orive, G., De Castro M., Ponce, S., Hernandez, R. M., Gascon, A. R., Bosch, M., Alberch, J., & Pedraz, J. L. (2005). Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Molecular Therapy, 12(2), 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Rinsch, C., Regulier, E., Deglon, N., Dalle, B., Beuzard, Y., & Aebischer, P. (1997). A gene therapy approach to regulated delivery of erythropoietin as a function of oxygen tension. Human Gene Therapy, 8(16), 1881–1889.

    Article  PubMed  CAS  Google Scholar 

  • Rinsch, C., Dupraz, P., Schneider, B. L., Déglon, N., Maxwell, P. H., Ratcliffe, P. J., & Aebischer, P. (2002). Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia. Kidney International, 62, 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, V. M., Gao, G. P., Grant, R. L., Schnell, M. A., Zoltick, P. W., Rozamus, L. W., Clackson, T., & Wilson, J. M. (2005). Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood, 105(4), 1424–1430.

    Article  PubMed  CAS  Google Scholar 

  • Scheidemann, F., Therrien, J. P., Vogel, J., & Pfutzner, W. (2010). In vivo synthesis and secretion of erythropoietin by genetically modified primary human keratinocytes grafted onto immunocompromised mice. Experimental Dermatology, 19(3), 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Sebestyen, M. G., Hegge, J. O., Noble, M. A., Lewis, D. L., Herweijer, H., & Wolff, J. A. (2007). Progress toward a nonviral gene therapy protocol for the treatment of anemia. Human Gene Therapy, 18(3), 269–285.

    Article  PubMed  CAS  Google Scholar 

  • Setoguchi, Y., Danel, C., & Crystal, R. G. (1994). Stimulation of erythropoiesis by in vivo gene therapy: Physiologic consequences of transfer of the human erythropoietin gene to experimental animals using an adenovirus vector. Blood, 84(9), 2946–2953.

    PubMed  CAS  Google Scholar 

  • Simonsen, L.O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology—A brief update. Science of the Total Environment, 432, 210–215.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, M., Tarumota, T., Ohmine, K., Furukawa, Y., Hatake, K., Ozawa, K., Hasegawa, Y., Mukai, H., Yamamoto, M., & Imagawa, S. (2001). Stimulation of GATA-2 as a mechanism of hydrogen peroxide suppression in hypoxia-induced erythropoietin gene expression. Journal of Cellular Physiology, 186, 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, Y., Beitner-Johnson, D., & Millhorn, D. E. (2001). Hypoxia-inducible factor 2alpha binds to cobalt in vitro. Biochemical Biophysical Research Communication, 288(4), 849–854.

    Article  CAS  Google Scholar 

Download references

Conflict of interest.

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Jelkmann M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelkmann, W., Jelkmann, W. Erythropoietin gene doping: facts and fictions. Sportwiss 42, 280–285 (2012). https://doi.org/10.1007/s12662-012-0268-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12662-012-0268-2

Keywords

Schlüsselwörter

Navigation