Skip to main content
Log in

Phosphorescence-based multiphysics visualization: a review

  • Review Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Phosphorescence-based visualization techniques have been successfully developed for the optical measurement of physical phenomena, such as particle image velocimetry (PIV) for velocity measurement, pressure-sensitive paint (PSP) for pressure measurement, and laser-induced fluorescence (LIF) or thermographic phosphors (TP) for temperature measurement. Multiphysics measurement techniques have been developed to analyze the correlations between each physical parameter. For multiphysics measurement, some researchers have combined two measurement techniques, including the application of functional particles which are sensitive to pressure or temperature to the conventional PIV technique for simultaneous measurement. The present review introduces some recent results of phosphorescence-based multiphysics visualization. The basics of phosphorescence are described, and the techniques of PIV, PSP, LIF, and TP are also discussed because these techniques were used for multiphysics measurement. Finally, the remarkable results of multiphysics measurement are summarized in detail, especially for simultaneous measurement techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

S N :

Singlet Nth excited states

T N :

Triplet Nth excited states

E :

Energy

h :

Plank constant

υ :

Frequency

c :

Speed of light

λ w :

Wavelength

I :

Intensity of light

t :

Time

τ :

Lifetime

E(t):

Energy of excitation light

λ :

Decay constant

τ r :

Risetime

N ab :

Numbers of electrons by transitions a, b

N c :

Numbers of electrons by transitions c

T (i,j) :

Temperature at (i,j) pixel

T (I,J) :

Temperature at (I,J) interrogation

References

  • Abe S, Okamoto K, Madarame H (2004) The development of PIV-PSP hybrid system using pressure sensitive particles. Meas Sci Technol 15(6):1153–1157. doi:10.1088/0957-0233/15/6/016

    Article  Google Scholar 

  • Abram C, Fond B, Heyes AL, Beyrau F (2013) High-speed planar thermometry and velocimetry using thermographic phosphor particles. Appl Phys B Lasers O 111(2):155–160. doi:10.1007/s00340-013-5411-8

    Article  Google Scholar 

  • Adrian RJ (1984) Scattering particle characteristics and their effect on pulsed laser measurements of fluid-flow—Speckle Velocimetry Vs Particle Image Velocimetry. Appl Opt 23(11):1690–1691

    Article  Google Scholar 

  • Ahn J, Mhetras S, Han JC (2005) Film-cooling effectiveness on a gas turbine blade tip using pressure-sensitive paint. J Heat Trans T Asme 127(5):521–530. doi:10.1115/1.1909208

    Article  Google Scholar 

  • Allison SW, Gillies GT (1997) Remote thermometry with thermographic phosphors: instrumentation and applications. Rev Sci Instrum 68(7):2615–2650. doi:10.1063/1.1148174

    Article  Google Scholar 

  • Bell JH, Schairer ET, Hand LA, Mehta RD (2001) Surface pressure measurements using luminescent coatings. Annu Rev Fluid Mech 33:155–206. doi:10.1146/annurev.fluid.33.1.155

    Article  Google Scholar 

  • Bencic TJ (1998) Rotating pressure and temperature measurements on scale-model fans using luminescent paints. AIAA Paper 98:3452

    Google Scholar 

  • Borbye J, Sørensen JN, Klein C (2008) Experimental investigation of frequency response of unsteady pressure sensitive paint and application for an oscillating airfoil. Dissertation

  • Chen J, Kim HD, Kim KC (2013) Measurement of dissolved oxygen diffusion coefficient in a microchannel using UV-LED induced fluorescence method. Microfluid Nanofluid 14(3–4):541–550. doi:10.1007/s10404-012-1072-x

    Article  Google Scholar 

  • Dani A, Guiraud P, Cockx A (2007) Local measurement of oxygen transfer around a single bubble by planar laser-induced fluorescence. Chem Eng Sci 62(24):7245–7252. doi:10.1016/j.ces.2007.08.047

    Article  Google Scholar 

  • Dano BPE, Liburdy JA, Kanokjaruvijit K (2005) Flow characteristics and heat transfer performances of a semiconfined impinging array of jets: effect of nozzle geometry. Int J Heat Mass Transf 48(3–4):691–701. doi:10.1016/j.ijheatmasstransfer.2004.07.046

    Article  Google Scholar 

  • El-Gabry LA, Kaminski DA (2005) Experimental investigation of local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets. J Turbomach 127(3):532–544. doi:10.1115/1.1861918

    Article  Google Scholar 

  • Engler RH, Merienne MC, Klein C, Le Sant Y (2002) Application of PSP in low speed flows. Aerosp Sci Technol 6(5):313–322. doi:10.1016/S1270-9638(02)01168-9

    Article  Google Scholar 

  • Facchini B, Surace M (2006) Impingement cooling for modern combustors: experimental analysis of heat transfer and effectiveness. Exp Fluids 40(4):601–611. doi:10.1007/s00348-005-0100-y

    Article  Google Scholar 

  • Feist JP, Heyes AL (2000) The characterization of Y2O2S : Sm powder as a thermographic phosphor for high temperature applications. Meas Sci Technol 11(7):942–947. doi:10.1088/0957-0233/11/7/310

    Article  Google Scholar 

  • Fond B, Abram C, Heyes AL, Kempf AM, Beyrau F (2012) Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles. Opt Express 20(20):22118–22133

    Article  Google Scholar 

  • Francois J, Dietrich N, Guiraud P, Cockx A (2011) Direct measurement of mass transfer around a single bubble by micro-PLIFI. Chem Eng Sci 66(14):3328–3338. doi:10.1016/j.ces.2011.01.049

    Article  Google Scholar 

  • Fuhrmann N, Kissel T, Dreizler A, Brübach J (2011) Gd3Ga5O12: Cr—a phosphor for two-dimensional thermometry in internal combustion engines. Meas Sci Technol 22(4):045301

    Article  Google Scholar 

  • Fuhrmann N, Schneider M, Ding CP, Brubach J, Dreizler A (2013) Two-dimensional surface temperature diagnostics in a full-metal engine using thermographic phosphors. Meas Sci Technol 24(9):1–9. Art ID 095203. doi:10.1088/0957-0233/24/9/095203

  • Funatani S, Fujisawa N, Ikeda H (2004) Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV with a colour CCD camera and its application to the turbulent buoyant plume. Meas Sci Technol 15(5):983–990. doi:10.1088/0957-0233/15/5/030

    Article  Google Scholar 

  • Geers LFG, Hanjalic K, Tummers MJ (2006) Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J Fluid Mech 546:255–284. doi:10.1017/S002211200500710x

    Article  MATH  Google Scholar 

  • Gouterman M, Callis J, Dalton L, Khalil G, Mebarki Y, Cooper KR, Grenier M (2004) Dual luminophore pressure-sensitive paint: III. Application to automotive model testing. Meas Sci Technol 15(10):1986–1994. doi:10.1088/0957-0233/15/10/007

    Article  Google Scholar 

  • Gregory JW (2002) Unsteady pressure measurements in a turbocharger compressor using porous pressure-sensitive paint. MS Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN

  • Gregory JW (2004) Porous pressure-sensitive paint for measurement of unsteady pressures in turbomachinery. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-0294, pp 1–11

  • Gregory JW, Asai K, Kameda M, Liu T, Sullivan JP (2008) A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proc Inst Mech Eng G J Aerosp Eng 222(G2):249–290. doi:10.1243/09544100jaero243

    Article  Google Scholar 

  • Heyes AL, Seefeldt S, Feist JP (2006) Two-colour phosphor thermometry for surface temperature measurement. Opt Laser Technol 38(4–6):257–265. doi:10.1016/j.optlastec.2005.06.012

    Article  Google Scholar 

  • Im SH, Khalil GE, Callis J, Ahn BH, Gouterman M, Xia YN (2005) Synthesis of polystyrene beads loaded with dual luminophors for self-referenced oxygen sensing. Talanta 67(3):492–497. doi:10.1016/j.talanta.2005.06.046

    Article  Google Scholar 

  • Jahanmiri M (2011) Pressure sensitive paints: the basics & applications. Chalmers University of Technology

  • Kavandi J, Callis J, Gouterman M, Khalil G, Wright D, Green E, Burns D, Mclachlan B (1990) Luminescent barometry in wind tunnels. Rev Sci Instrum 61(11):3340–3347. doi:10.1063/1.1141632

    Article  Google Scholar 

  • Khalid AH, Kontis K (2008) Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications. Sensors Basel 8(9):5673–5744. doi:10.3390/S8095673

    Article  Google Scholar 

  • Khalid AH, Kontis K (2009) 2D surface thermal imaging using rise-time analysis from laser-induced luminescence phosphor thermometry. Meas Sci Technol 20(2):1–9. Art ID 025305

  • Kim HD, Yi SJ, Kim KC (2013) Simultaneous measurement of dissolved oxygen concentration and velocity field in microfluidics using oxygen-sensitive particles. Microfluid Nanofluid 15(2):139–149. doi:10.1007/s10404-012-1130-4

    Article  MathSciNet  Google Scholar 

  • Kimura F, Khalil G, Zettsu N, Xia YN, Callis J, Gouterman M, Dalton L, Dabiri D, Rodriguez M (2006) Dual luminophore polystyrene microspheres for pressure-sensitive luminescent imaging. Meas Sci Technol 17(6):1254–1260. doi:10.1088/0957-0233-17/6/S04

    Article  Google Scholar 

  • Kimura F, McCann J, Khalil GE, Dabiri D, Xia YN, Callis JB (2010) Simultaneous velocity and pressure measurements using luminescent microspheres. Rev Sci Instrum 81(6):1–9. Art ID 064101. doi:10.1063/1.3422324

  • Kontis K (2007) A review of some current research on pressure sensitive paint and thermographic phosphor techniques. Aeronaut J 111(1122):495–508

    Google Scholar 

  • Kontis K, Syogenji Y, Yoshikawa N (2002) Surface thermometry by laser-induced fluorescence of Dy3+ : YAG. Aeronaut J 106(1062):453–457

    Google Scholar 

  • Lepicovsky J, Bencic TJ (2002) Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks. Exp Fluids 33(4):531–538. doi:10.1007/s00348-002-0476-x

    Article  Google Scholar 

  • Liu T (1997) Temperature and pressure sensitive paints in aerodynamics. Appl Mech Rev 50(4):227–246

    Article  Google Scholar 

  • Liu T, Sullivan J (2005) Pressure and temperature sensitive paints (2005), (ed) Springer, Berlin

  • Liu T, Torgerson S, Sullivan J, Johnston R, Fleeter S (1997) Rotor blade pressure measurement in a high speed axial compressor using pressure and temperature sensitive paints. AIAA Paper 162:1997

    Google Scholar 

  • Maier A, Sheldrake TH, Wilcock D (2000) Geometric parameters influencing flow in an axisymmetric IC engine inlet port assembly: part I—valve flow characteristics. J Fluid Eng T Asme 122(4):650–657. doi:10.1115/1.1311787

    Article  Google Scholar 

  • Mebarki Y, Cooper KR, Reichert TM (2003) Automotive testing using pressure-sensitive paint. J Vis Jpn 6(4):381–393

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406–1416. doi:10.1088/0957-0233/8/12/005

    Article  Google Scholar 

  • Nakakita K, Asai K Pressure-sensitive paint application to a wing-body model in a hypersonic shock tunnel. In: 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2002

  • Nakakita K, Kurita M, Mitsuo K, Watanabe S (2006) Practical pressure-sensitive paint measurement system for industrial wind tunnels at JAXA. Meas Sci Technol 17(2):359–366. doi:10.1088/0957-0233/17/2/017

    Article  Google Scholar 

  • Neubert P (1937) Device for indicating the temperature distribution of hot bodies. US Patent No. 2,071,471

  • Newton PJ, Lock GD, Krishnababu SK, Hodson HP, Dawes WN, Hannis J, Whitney C (2006) Heat transfer and aerodynamics of turbine blade tips in a linear cascade. J Turbomach 128(2):300–309. doi:10.1115/1.2137745

    Article  Google Scholar 

  • Omrane A, Juhlin G, Ossler F, Alden M (2004a) Temperature measurements of single droplets by use of laser-induced phosphorescence. Appl Opt 43(17):3523–3529. doi:10.1364/Ao.43.003523

    Article  Google Scholar 

  • Omrane A, Ossler F, Aldén M (2004b) Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence. Exp Therm Fluid Sci 28(7):669–676

    Article  Google Scholar 

  • Omrane A, Sarner G, Engstrom J, Alden M (2005) Development of temperature measurements using thermographic phosphors: applications for combustion diagnostics. In: ECM (European Combustion Meeting)

  • Omrane A, Juhlin G, Alden M, Josefsson G, Engström J, Benham T (2004c) Demonstration of two-dimensional temperature characterization of valves and transparent piston in a GDI optical engine. SAE Trans 113(3):449–457

    Google Scholar 

  • Omrane A, Petersson P, Alden M, Linne MA (2008) Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors. Appl Phys B Lasers O 92(1):99–102. doi:10.1007/s00340-008-3051-1

    Article  Google Scholar 

  • Parks JE, Armfield JS, Barber TE, Storey JME, Wachter EA (1998) In situ measurement of fuel in the cylinder wall oil film of a combustion engine by LIF spectroscopy. Appl Spectrosc 52(1):112–118. doi:10.1366/0003702981942410

    Article  Google Scholar 

  • Raju LC, Venkatakrishnan L, Viswanath PR (2006) Pressure sensitive paint measurements on a delta-wing in supersonic flow. Aeronaut J 110(1113):767–771

    Google Scholar 

  • Rhys-Williams A, Fuller M (1983) The use of a computer controlled luminescence spectrometer in the study of the time resolved emission of trivalent europium in yttrium oxide, computer enhanced spectroscopy, 1, 145

  • Rothamer DA, Jordan J (2012) Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors. Appl Phys B Lasers O 106(2):435–444. doi:10.1007/s00340-011-4707-9

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp Fluids 26(1–2):7–15. doi:10.1007/s003480050260

    Article  Google Scholar 

  • Sargison JE, Oldfield MLG, Guo SM, Lock GD, Rawlinson AJ (2005) Flow visualisation of the external flow from a converging slot-hole film-cooling geometry. Exp Fluids 38(3):304–318. doi:10.1007/s00348-004-0892-1

    Article  Google Scholar 

  • Seyfried H, Richter M, Alden M, Schmidt H (2007) Laser-induced phosphorescence for surface thermometry in the afterburner of an aircraft engine. Aiaa J 45(12):2966–2971. doi:10.2514/1.30017

    Article  Google Scholar 

  • Shimbo Y, Asai K, Komatsu N (2000) Pressure sensitive paint application at large production wind tunnels. In: proceedings of 22nd congress of international council of the aeronautical sciences, Paper No. 00–3.3

  • Someya S, Yoshida S, Li YR, Okamoto K (2009) Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles. Meas Sci Technol 20(2):1–9. Art ID 025403. doi:10.1088/0957-0233/20/2/025403

  • Someya S, Furutani H, Okamoto K (2013) Instantaneous phosphor thermometry applicable to walls exposed to flames. Exp Therm Fluid Sci 47:224–231. doi:10.1016/j.expthermflusci.2013.01.017

    Article  Google Scholar 

  • Son CM, Gillespie D, Ireland P (2001) Heat transfer and flow characteristics of an engine representative impingement cooling system. J Turbomach 123(1):154–160. doi:10.1115/1.1328087

    Article  Google Scholar 

  • Song DH, Kim HD, Kim KC (2011) Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film. J Vis Jpn 14(3):295–304. doi:10.1007/s12650-011-0096-8

    Article  Google Scholar 

  • Turm N (1978) Modern molecular photochemistry. Benjamin Cumrnings Publ Co Mcnlo Park Fluoresc Lanc i 412416(19):1–89

    Google Scholar 

  • Vogt J, Stephan P (2012) Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields. Meas Sci Technol 23(10):1–12. Art ID 105306. doi:10.1088/0957-0233/23/10/105306

  • Wagner E, Stephan P (2007) Frequency response of a surface thermometer based on unencapsulated thermochromic liquid crystals. Exp Therm Fluid Sci 31(7):687–699. doi:10.1016/j.expthermflusci.2006.07.003

    Article  Google Scholar 

  • Waite JH (1984) Determination of (Catecholato)borate complexes using difference spectrophotometry. Anal Chem 56(11):1935–1939. doi:10.1021/Ac00275a040

    Article  Google Scholar 

  • Woodrow PT, Duke SR (2001) Laser-induced fluorescence studies of oxygen transfer across unsheared flat and wavy air-water interfaces. Ind Eng Chem Res 40(8):1985–1995. doi:10.1021/ie000321j

    Article  Google Scholar 

  • Yamashita T, Sugiura H, Nagai H, Asai K, Ishida K (2007) Pressure-sensitive paint measurement of the flow around a simplified car model. J Vis Jpn 10(3):289–298

    Article  Google Scholar 

  • Yuen CHN, Martinez-Botas RF (2005) Film cooling characteristics of rows of round holes at various streamwise angles in a crossflow: part II. Heat transfer coefficients. Int J Heat Mass Tran 48(23–24):5017–5035

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) [No. 2012R1A2A4A01008749, No. 2011-0030013 (GCRC-SOP)], and also by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) sponsored by the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20132020000390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Chun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S.J., Kim, K.C. Phosphorescence-based multiphysics visualization: a review. J Vis 17, 253–273 (2014). https://doi.org/10.1007/s12650-014-0215-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-014-0215-4

Keywords

Navigation