Skip to main content

Advertisement

Log in

Process Innovation Via Supercritical Water Gasification to Improve the Conventional Plants Performance in Treating Highly Humid Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of the paper is a comparison among three innovative process layouts for biomethane and power production from humid biomasses: anaerobic digestion (AD), supercritical water gasification integrated in a supercritical steam turbine stages (SCWG + SuST) and a technology that combines these two, AD plus SCWG and SuST. All the solutions were implemented in an ad hoc simulative tool of Aspen Hysis® v.7.0.1. Livestock sludge (LS) with an energy content up to 10 wt% (ashes free) was used as reference biomass to establish and compare the performance of any proposed process scheme. LS feedstocks introduced in the SCWG + SuST increased both biomethane production and power production of about 50 % compared to AD process that produces 25 Nm3/(day t) of pure biomethane. Combining both technologies, the digestate from AD outflow is feeding the SCWG + SuST process, there is an increase of 50 % of power generation with a production of biomethane of about 36 Nm3/(day t). Another advantage of the SCWG + SuST is that, set the fed, it is possible to reduce drastically the volume of the plant because the fermentation step, which usually corresponds to 15–30 days, is not required. Considering that although AD process is a simple and consolidated technology, it does not allow the total recovery of the organic compounds and requires long period for the biomass, the proposed innovative processes could offer new solutions for biomethane and power production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC

  2. Yin, D., Liu, W., Zhai, N., Yang, G., Wang, X., Feng, Y., Ren, G.: Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition. Bioresour. Technol. 166, 373–380 (2014)

    Article  Google Scholar 

  3. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)

    Article  Google Scholar 

  4. Seiler, W., Crutzen, P.J.: Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980)

    Article  Google Scholar 

  5. Iovane, P., Nanna, F., Ding, Y., Bikson, B., Molino, A.: Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel 135, 352–358 (2014)

    Article  Google Scholar 

  6. Molino, A., Nanna, F., Iovane, P.: Low pressure biomethane production by anaerobic digestion (AD) for the smart grid injection. Fuel 154, 319–325 (2015)

    Article  Google Scholar 

  7. Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G., Braccio, G.: Biogas upgrading via membrane process: modelling of pilot plant scale and the end uses for the grid injection. Fuel 107, 585–592 (2013)

    Article  Google Scholar 

  8. Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G.: Biomethane production by anaerobic digestion of organic waste. Fuel 103, 1003–1009 (2013)

    Article  Google Scholar 

  9. Molino, A., Nanna, F., Migliori, M., Iovane, P., Ding, Y., Bikson, B.: Experimental and simulation results for biomethane production using peek hollow fiber membrane. Fuel 112, 489–493 (2013)

    Article  Google Scholar 

  10. Matsumura, Y., et al.: Biomass gasification in near- and supercritical water: status and prospects. Biomass Bioenergy 29, 269–292 (2005)

    Article  Google Scholar 

  11. Peterson, A., et al.: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32–65 (2008). doi:10.1039/b810100k

    Article  Google Scholar 

  12. Basu, P.: Hydrothermal Gasification of Biomass, in Biomass Gasification, Pyrolysis, and Torrefaction (2013), pp. 315–352

  13. Kruse, A., Dinjus, E.: Hot compressed water as reaction medium and reactant properties and synthesis reactions. J. Supercrit. Fluids 39, 362–380 (2007)

    Article  Google Scholar 

  14. Kruse, A., Maniam, P., Spieler, F.: Influence of proteins on the hydrothermal gasification and liquefaction of biomass. Ind. Eng. Chem. Res. 46, 87–96 (2007)

    Article  Google Scholar 

  15. Kruse, A., Gawlik, A.: Biomass conversion in water at 330–410 °C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 42, 267–279 (2003)

    Article  Google Scholar 

  16. Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M.: Chemistry in supercritical water. Angew. Chem. Int. Ed. Engl. 38, 2998–3014 (1999)

    Article  Google Scholar 

  17. Krammer, P., Vogel, H.: Hydrolysis of esters in subcritical and supercritical water. J. Supercrit. Fluids 16, 189–206 (2000)

    Article  Google Scholar 

  18. Kritzer, P., Dinjus, E.: An assessment of supercritical water oxidation (SCWO) existing problems, possible solutions and new reactor concepts. Chem. Eng. J. 83, 207–214 (2001)

    Article  Google Scholar 

  19. Kritzer, P.: Corrosion in high-temperature and supercritical water and aqueous solutions: a review. J. Supercrit. Fluids 29(1–2), 1–29 (2004)

    Article  Google Scholar 

  20. Guo, Y., Wang, S.Z., Xu, D.H., Gong, Y.M., Ma, H.H., Tang, X.Y.: Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew. Sustain. Energy Rev. 14(1), 334–343 (2010)

    Article  Google Scholar 

  21. Kim, J., Chulhwan, P., Tak-Hyun, K., Myunggu, L., Sangyong, K., Seung-Wook, K., Jinwon, L.: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95(3), 271–275 (2003)

    Article  Google Scholar 

  22. Gunaseelan, V.N.: Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13, 83–114 (1997)

    Article  Google Scholar 

  23. Molino, A., et al.: Gasification of granulated scrap tires for the production of syngas and a low-cost adsorbent for removal from wastewaters. Ind. Eng. Chem. Res. 52, 12154–12160 (2013)

    Article  Google Scholar 

  24. Molino, A., et al.: Classification procedure of the explosion risk areas in presence of hydrogen-rich syngas: biomass gasifier and molten carbonate fuel cell integrated plant. Fuel 99, 245–253 (2012)

    Article  Google Scholar 

  25. Franco, A., Diaz, A.R.: The future challenges for ‘‘clean coal technologies’’: joining efficiency increase and pollutant emission control. Energy 34, 348–354 (2009)

    Article  Google Scholar 

  26. Song, Y.C., Kwon, S.J., Woo, J.H.: Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res. 38, 1653–1662 (2004)

    Article  Google Scholar 

  27. Johnson, D.K., Chum, H.L., Anzick, R., Baldwin, R.M.: Lignin liquefaction in supercritical water. Research in thermochemical biomass conversion, pp. 485–496. Elsevier Science Publisher Ltd (1988)

  28. Funazukuri, T., Wakao, N., Smith, J.M.: Liquefaction of lignin sulphonate with subcritical and supercritical water. Fuel 69, 349–353 (1990)

    Article  Google Scholar 

  29. Stucki, S., Vogel, F., Ludwig, C., Haiduc, A.G., Brandenberger, M.: Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ. 2, 535–541 (2009)

    Article  Google Scholar 

  30. Demirbas, A.: Hydrogen production from biomass via supercritical water gasification. Energy Sources 32, 1342–1354 (2010)

    Article  Google Scholar 

  31. Xiao, P., Guo, L., Zhang, X., Zhu, C., Ma, S.: Continuous hydrogen production by biomass gasification in supercritical water heated by molten salt flow: system development and reactor assessment. Int. J. Hydrog. Energy 38, 12927–12937 (2013)

    Article  Google Scholar 

  32. Reddy, S.N., Nanda, S., Dalai, A.K., Kozinski, J.A.: Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrog. Energy 39, 6912–6926 (2014)

    Article  Google Scholar 

  33. Chakinala, A.G., Brilman, D.W.F., van Swaaij, W.P.M., Kersten, S.R.A.: Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind. Eng. Chem. 49, 1113–1122 (2010)

    Article  Google Scholar 

  34. Liu, Z., Chu, B., Zhai, X., Jin, Y., Cheng, Y.: Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95, 599–605 (2012)

    Article  Google Scholar 

  35. Serrera, A., Ortiz, F.J.G., Ollero, P.: Syngas methanation from the supercritical water reforming of glycerol. Energy 76, 584–592 (2014)

    Article  Google Scholar 

  36. Barbarossa, V., Vanga, G., Viscardi, R., Gattia, D.M.: CO2 as carbon source for fuel synthesis. Energy Procedia 45, 1325–1329 (2014)

    Article  Google Scholar 

  37. Abu Bakar, W.A.W., Ali, R., Toemen, S.: Catalytic methanation reaction over supported nickel–ruthenium oxide base for purification of simulated natural gas. Scientia Iranica 19, 525–534 (2012)

    Article  Google Scholar 

  38. Er-rbib, H., Bouallou, C.: Modelling and simulation of methanation catalytic reactor for renewable electricity storage. Chem. Eng. Trans. 35, 541–546 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Molino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molino, A., Giordano, G., Migliori, M. et al. Process Innovation Via Supercritical Water Gasification to Improve the Conventional Plants Performance in Treating Highly Humid Biomass. Waste Biomass Valor 7, 1289–1295 (2016). https://doi.org/10.1007/s12649-016-9528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9528-y

Keywords

Navigation