Skip to main content
Log in

Role of Reaction Temperature on Pyrolysis of Cotton Residue

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cotton production is accompanied by generation of huge amounts of residue all over the world. Slow pyrolysis of cotton residue has been carried out under nitrogen atmosphere at temperatures of 300, 350, 400 and 450 °C. Maximum bio-oil yield of 38 wt% was obtained at 400 °C. The organic fraction of bio-oil has been characterised using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR) and gas chromatography–mass spectrometry (GC-MS). Bio-oil contains phenolic compounds which are mostly derived from lignin fraction. The bio-char characterisation using FT-IR, powder X-ray diffraction (XRD) and scanning electron microscope (SEM) indicate the aromatic structure of bio-char. The gas characterisation indicates that decarboxylation and decarbonylation reactions have majorly occurred during pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). doi:10.1126/science.1114736

    Article  Google Scholar 

  2. Stöcker, M.: Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47(48), 9200–9211 (2008). doi:10.1002/anie.200801476

    Article  Google Scholar 

  3. Sharma-Shivappa, R.R., Chen, Y.: Conversion of cotton wastes to bioenergy and value-added products. Trans Asabe 51(6), 2239–2246 (2008)

    Article  Google Scholar 

  4. Binod, P., Kuttiraja, M., Archana, M., Janu, K.U., Sindhu, R., Sukumaran, R.K., Pandey, A.: High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92(1), 340–345 (2012). doi:10.1016/j.fuel.2011.07.044

    Article  Google Scholar 

  5. Pandey, S.N., Shaikh, A.J.: A study on chemical composition of cotton plant stalk of different species. Indian Pulp. Pap. 41, 10–13 (1986)

    Google Scholar 

  6. Ren, Q., Zhao, C., Duan, L., Chen, X.: NO formation during agricultural straw combustion. Bioresour. Technol. 102(14), 7211–7217 (2011). doi:10.1016/j.biortech.2011.04.090

    Article  Google Scholar 

  7. Wu, Y., Wu, S., Li, Y., Gao, J.: Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw. Energy Fuels 23, 5144–5150 (2009). doi:10.1021/ef900496b

    Article  Google Scholar 

  8. Kantarelis, E., Zabaniotou, A.: Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture. Bioresour. Technol. 100(2), 942–947 (2009). doi:10.1016/j.biortech.2008.07.061

    Article  Google Scholar 

  9. Wang, C., Pan, J., Li, J., Yang, Z.: Comparative studies of products produced from four different biomass samples via deoxy-liquefaction. Bioresour. Technol. 99(8), 2778–2786 (2008). doi:10.1016/j.biortech.2007.06.023

    Article  Google Scholar 

  10. El-Hendawy, A.-N.A., Alexander, A.J., Andrews, R.J., Forrest, G.: Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks. J. Anal. Appl. Pyrolysis 82(2), 272–278 (2008). doi:10.1016/j.jaap.2008.04.006

    Article  Google Scholar 

  11. El-Kalyoubi, S.F., El-Shinnawy, N.A.: Thermal behaviour of lignins extracted from different raw materials. Thermochim. Acta 94(2), 231–238 (1985). doi:10.1016/0040-6031(85)85266-7

    Article  Google Scholar 

  12. Ren, Q., Zhao, C., Wu, X., Liang, C., Chen, X., Shen, J., Tang, G., Wang, Z.: TG–FTIR study on co-pyrolysis of municipal solid waste with biomass. Bioresour. Technol. 100(17), 4054–4057 (2009). doi:10.1016/j.biortech.2009.03.038

    Article  Google Scholar 

  13. Lu, Q., Zhu, X., Li, W., Zhang, Y., Chen, D.: On-line catalytic upgrading of biomass fast pyrolysis products. Chin. Sci. Bull. 54(11), 1941–1948 (2009). doi:10.1007/s11434-009-0273-5

    Google Scholar 

  14. Chen, Y., Yang, H., Wang, X., Zhang, S., Chen, H.: Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour. Technol. 107, 411–418 (2012). doi:10.1016/j.biortech.2011.10.074

    Article  Google Scholar 

  15. Putun, A.E., Ozbay, N., Onal, E.P., Putun, E.: Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Process. Technol. 86(11), 1207–1219 (2005). doi:10.1016/j.fuproc.2004.12.006

    Article  Google Scholar 

  16. Zheng, J.-L., Yi, W.-M., Wang, N.N.: Bio-oil production from cotton stalk. Energy Convers. Manag. 49(6), 1724–1730 (2008). doi:10.1016/j.enconman.2007.11.005

    Article  Google Scholar 

  17. Wang, J., Zhang, M., Chen, M., Min, F., Zhang, S., Ren, Z., Yan, Y.: Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim. Acta 444(1), 110–114 (2006). doi:10.1016/j.tca.2006.02.007

    Article  Google Scholar 

  18. Xiu, S.N., Li, Z.H., Li, B.M., Yi, W.M., Bai, X.Y.: Devolatilization characteristics of biomass at flash heating rate. Fuel 85(5–6), 664–670 (2006). doi:10.1016/j.fuel.2005.08.044

    Google Scholar 

  19. Fu, P., Hu, S., Xiang, J., Sun, L., Su, S., An, S.: Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J. Anal. Appl. Pyrolysis 97, 130–136 (2012). doi:10.1016/j.jaap.2012.05.012

    Article  Google Scholar 

  20. Balagurumurthy, B., Singh, R., Oza, T.S., Kumar, K.L.N.S., Saran, S., Bahuguna, G.M., Chauhan, R.K., Bhaskar, T.: Effect of pressure and temperature on the hydropyrolysis of cotton residue. J. Mater. Cycles Waste Manag. 16(3), 442–448 (2014). doi:10.1007/s10163-014-0250-1

    Article  Google Scholar 

  21. Grierson, S., Strezov, V., Shah, P.: Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresour. Technol. 102(17), 8232–8240 (2011). doi:10.1016/j.biortech.2011.06.010

    Article  Google Scholar 

  22. Azargohar, R., Nanda, S., Rao, B.V.S.K., Dalai, A.K.: Slow pyrolysis of deoiled canola meal: product yields and characterization. Energy Fuels 27(9), 5268–5279 (2013). doi:10.1021/ef400941a

    Google Scholar 

  23. Uchimiya, M., Orlov, A., Ramakrishnan, G., Sistani, K.: In situ and ex situ spectroscopic monitoring of biochar’s surface functional groups. J. Anal. Appl. Pyrolysis 102, 53–59 (2013). doi:10.1016/j.jaap.2013.03.014

    Article  Google Scholar 

  24. Putun, A.E., Ozbay, N., Varol, E.A., Uzun, B.B., Ates, F.: Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Int. J. Energy Res. 31(5), 506–514 (2007). doi:10.1002/er.1263

    Article  Google Scholar 

  25. Mullen, C.A., Strahan, G.D., Boateng, A.A.: Characterization of various fast-pyrolysis bio-oils by nmr spectroscopy. Energy Fuels 23, 2707–2718 (2009). doi:10.1021/ef801048b

    Article  Google Scholar 

  26. Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., Chen, Y.: Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47, 268–276 (2012). doi:10.1016/j.biombioe.2012.09.034

    Article  Google Scholar 

  27. Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007). doi:10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank The Director, CSIR-Indian Institute of Petroleum, Dehradun, for his constant encouragement and support. RS thanks Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing Senior Research Fellowship (SRF). The authors thank CSIR in the form of XII Five Year Plan project (CSC0116/BioEn) and Ministry of New and Renewable Energy for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thallada Bhaskar.

Ethics declarations

Conflict of interest

There is no potential conflict of interest (financial or non-financial) for any of the authors. The research does not involve the participation of human beings or animals. All the authors consent to submit the manuscript to the journal “Waste and Biomass Valorization”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, B.B., Biswas, B., Kumar, J. et al. Role of Reaction Temperature on Pyrolysis of Cotton Residue. Waste Biomass Valor 7, 71–78 (2016). https://doi.org/10.1007/s12649-015-9440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9440-x

Keywords

Navigation