Skip to main content

Advertisement

Log in

Bioethanol Production From Aquatic Weed Water Hyacinth (Eichhornia crassipes) by Yeast Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bioethanol production from biomass has high potential to substitute fossil fuels. Pretreatment of lignocellulosic materials is one of the vital keys for an economical process for bioethanol production. The main aim of the study was identifying the potent ethanol producing yeast strains (Pachysolen tannophilus, Candida intermedia, Pichia stipitis and Saccharomyces cerevisiae) using enzymatic hydrolysis. Trichoderma reesei NRRL-3652 was used to produce cellulase and xylanase under solid state condition, using acid pretreated water hyacinth biomass as a substrate. The enzyme complex (cellulase 18.33 IU/mL and xylanase 31.43 IU/mL) thus produced was utilized for hydrolyses resulting in soluble sugars. The alterations in physical, chemical structures and delignification was determined by scanning electron microscopy, Fourier transformed infrared spectroscopy and X-ray diffraction. The best results of ethanol production were obtained with P. tannophilus reaching a maximum ethanol concentration of 0.043 g/g, followed by 0.021–0.037 g/g for C. intermedia and P. stipitis. On the contrary, ethanol yield of S. cerevisiae was decreased (0.015 g/g) due to non-assimilation of pentose sugar. This study represents the suitability of biologically delignified water hyacinth as a feedstock for fuel ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Govumoni, S.P., Koti, S., Kothagouni, S.Y., Venkateshwar, S., Linga, V.R.: Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohyd. Polym. 91, 646–650 (2013)

    Article  Google Scholar 

  2. United Nations Organization for Food and Agriculture, Study Forest Forest and Energy. Key Issues. Rome. P. 154 (2008)

  3. Olsson, L.: Editor Biofuels. Advances in Biochemical Engineering/Biotechnology, vol. 108, p. 41. Springer, Berlin (2007)

    Google Scholar 

  4. Forest biotech and climate change, Fenning, T.M., Walter, C., Gartland, K.M.A.: Forest biotech and climate change. Nat. Biotechnol. 26, 615–617 (2008)

    Article  Google Scholar 

  5. Fengel, D., Wegener, G.: Wood. Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin (1984)

    Google Scholar 

  6. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693–3700 (2005)

    Article  Google Scholar 

  7. Saha, B.C., Cotta, M.A.: Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol. Prog. 22, 449–453 (2006)

    Article  Google Scholar 

  8. Bradshaw, T.C., Alizadeh, H., Teymouri, F., Balan, V., Dale, B.E.: Ammonia fiber expansion pretreatment and enzymatic hydrolysis on two different growth stages of reed canarygrass. Appl. Biochem. Biotech. 137(1–12), 395–405 (2007)

    Google Scholar 

  9. Kumar, P., Barrett, D., Delwiche, M., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    Article  Google Scholar 

  10. Hendriks, A., Zeeman, G.: Review: pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Article  Google Scholar 

  11. Linde, M., Jakobsson, E., Galbe, M., Zachhi, G.: Steam pretreatment of dilute H2SO4-imperegnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass. Bioenerg. 32, 326–332 (2008)

    Article  Google Scholar 

  12. Sassner, P., Martensson, C., Galbe, M., Zacchi, G.: Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresour. Technol. 99, 137–145 (2008)

    Article  Google Scholar 

  13. Wyman, C., Dale, B., Elander, R., Holtzapple, M., Ladisch, M., Lee, Y.: Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96, 1959–1966 (2005)

    Article  Google Scholar 

  14. Yang, B., Wyman, C.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel. Bioprod. Biorefin. 2, 26–40 (2008)

    Article  Google Scholar 

  15. Talebnia, F., Karakashev, D., Angelidaki, I.: Production of bio ethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101, 4744–4753 (2010)

    Article  Google Scholar 

  16. Zaldivar, J., Nielsen, J., Olsson, L.: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56, 17–34 (2001)

    Article  Google Scholar 

  17. Lin, Y., Tanka, S.: Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69, 627–642 (2006)

    Article  Google Scholar 

  18. Watanabe, S., Saleh, A.A., Pack, S.P., Annaluru, N., Kodaki, T., Makino, K.: Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153, 3044–3054 (2007)

    Article  Google Scholar 

  19. Grootjen, D., Meijlink, L., van der Lans, R., Luyben, K.: Cofermentation of glucose and xylose with immobilized Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 12, 860–864 (1990)

    Article  Google Scholar 

  20. Taniguchi, M., Itaya, T., Tohma, T., Fujii, M.: Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J. Ferment. Bioeng. 84, 59–64 (1997)

    Article  Google Scholar 

  21. Taniguchi, M., Tohma, T., Itaya, T., Fujii, M.: Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory deficient mutant of Saccharomyces cerevisiae. J. Ferment. Bioeng. 83, 364–370 (1997)

    Article  Google Scholar 

  22. Laplace, J.M., Delgenes, J.P., Moletta, R., Navarro, J.M.: Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochem. 28, 519–525 (1993)

    Article  Google Scholar 

  23. Fu, N., Peiris, P., Bavor, J.: A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb. Technol. 45, 210–217 (2010)

    Article  Google Scholar 

  24. Lebeau, T., Jouenne, T., Junter, G.A.: Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb. Technol. 21, 265–272 (1997)

    Article  Google Scholar 

  25. Lebeau, T., Jouenne, T., Junter, G.A.: Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae coimmobilized with Saccharomyces cerevisiae. Microbiol. Res. 162, 211–218 (2007)

    Article  Google Scholar 

  26. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002)

    Article  Google Scholar 

  27. Gunnarsson, C.C., Petersen, C.M.: Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag 27(1), 117–129 (2007)

    Article  Google Scholar 

  28. Lewandowski, I., Scurlock, J.M.O., Lindvall, E., Christou, M.: The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass. Bioenerg. 25(4), 335–361 (2003)

    Article  Google Scholar 

  29. Van Maris, A.J.A., Abbott, D.A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M.A.H., Wisselink, H.W., Scheffers, W.A., van Dijken, J.P., Pronk, J.T.: Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4), 391–418 (2006)

    Article  Google Scholar 

  30. Singh, H.D., Nag, B., Sarma, A.K., Baruah, J.N.: Nutrient control of water hyacinth growth and productivity. Proc. UNEP. Rep. Ser. 7, 243–263 (1984)

    Google Scholar 

  31. Nigam, J.N.: Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97, 107–116 (2002)

    Article  Google Scholar 

  32. Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., Fujita, M.: Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 100, 3293–3297 (2008)

    Google Scholar 

  33. Vaidyanathan, S., Kavadia, K., Shroff, K., Mahajan, S.: Biogas production in batch and semicontinuous digesters using water hyacinth. Biotechnol. Bioeng. 27(6), 905–908 (1985)

    Article  Google Scholar 

  34. Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., Prachayasittikul, V.: Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J. 6, 167–176 (2007)

    Google Scholar 

  35. Vásquez, M.P., Silva, J.N.C., Souza, M.B., Pereira, N.: Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Appl. Biochem. Biotechnol. 136, 141–154 (2007)

    Article  Google Scholar 

  36. Ahn, D.J., Kim, S.K., Yun, H.S.: Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 35, 35–41 (2012)

    Article  Google Scholar 

  37. Lee, J.M., Shi, J., Venditti, R.A., Jameel, H.: Autohydrolysis pretreatment of Coastal Bermuda grass for increased enzyme hydrolysis. Bioresour. Technol. 100, 6434–6441 (2009)

    Article  Google Scholar 

  38. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., Kammen, D.M.: Ethanol can contribute to energy and environmental goals. Science 311, 506–508 (2006)

    Article  Google Scholar 

  39. Norman, A.G., Jenkins, S.H.: A new method for the determination of cellulose, based upon observations on the removal of lignin and other encrusting materials. Biochem. J. 27(3), 818–831 (1933)

    Google Scholar 

  40. O’dwyer, M.H.: The hemicelluloses. III. The hemicellulose of American white oak. Biochem. J. 17(4–5), 501–509 (1923)

    Google Scholar 

  41. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Article  Google Scholar 

  42. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  43. Segal, L., Creely, J., Martin, A., Conrad, C.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)

    Article  Google Scholar 

  44. Eberts, T.J., Sample, R.H., Glick, M.R., Ellis, G.H.: A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clin. Chem. 25, 1440–1443 (1979)

    Google Scholar 

  45. Johnson, S.L., Bliss, M., Mayersohn, M., Conrad, K.A.: Phloroglucinol-based colorimetry of xylose in plasma and urine compared with a specific gaschromatographic procedure. Clin. Chem. 30, 1571–1574 (1984)

    Google Scholar 

  46. Bennett, C.: Spectrophotometric acid dichromate method for the determination of ethyl alcohol. Am. J. Med. Technol. 37, 217–220 (1971)

    Google Scholar 

  47. Pilone, G.J.: Determination of ethanol in wine by titrimetric and spectrophotometric dichromate methods: collaborative study. J. Assoc. Off. Anal. Chem. 68(2), 188–190 (1985)

    Google Scholar 

  48. Selig, M.J., Vinzant, T.B., Himmel, M.E., Decker, S.R.: The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 155(1), 94–103 (2009)

    Article  Google Scholar 

  49. Sanchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27(2), 185–194 (2009)

    Article  Google Scholar 

  50. Kulkarni, N., Shendye, A., Rao, M.: Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456 (1999)

    Article  Google Scholar 

  51. Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., Zupancic, S.: Production of fungal xylanases. Bioresour. Technol. 58, 137–161 (1996)

    Article  Google Scholar 

  52. Takagi, T., Uchida, M., Matsushima, R., Ishida, M., Urano, N.: Efficient bioethanol production from water hyacinth Eicchornia crassipes by both preparation of the saccharified solution and selection of fermenting yeasts. Fish. Sci. 78, 407–417 (2012)

    Article  Google Scholar 

  53. Rollin, J.A., Zhu, Z., Sathitsuksanoh, N., Zhang, Y.H.P.: Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol. Bioeng. 108(1), 22–30 (2011)

    Article  Google Scholar 

  54. Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100(17), 3948–3962 (2009)

    Article  Google Scholar 

  55. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S.: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101(13), 4900–4906 (2010)

    Article  Google Scholar 

  56. Wu, J., Zhang, X., Wan, J., Ma, F., Tang, Y., Zhang, X.: Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsuta by hot pressing without adhesive. Bioresour. Technol. 102(24), 11258–11261 (2011)

    Article  Google Scholar 

  57. Sathyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K.U., Sukumaran, R.K., Pandey, A.: Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation. J. Sci. Ind. Res. India 70, 156–161 (2011)

    Google Scholar 

  58. Zhang, S., Xu, Y., Hanna, M.A.: Pretreatment of corn stover with twin-screw extrusion followed by enzymatic saccharification. Appl. Biochem. Biotechnol. 166(2), 458–469 (2012)

    Article  Google Scholar 

  59. Manivannan, A., Hepsibha Jeyarani, P., Narendhirakannan, R.T.: Enhanced acid hydrolysis for bioethanol production from water hyacinth (Eichhornia crassipes) using fermentating yeast Candida intermedia NRRL Y-981. J. Sci. Ind. Res. India 71, 51–56 (2012)

    Google Scholar 

  60. Helena, P., Paula, G.P., Susana, C., Helena, C., Agostino, S., Teresa, M., Fernando, R., Felix, C., Maria, L.B.: GC determination of acetone, acetaldehyde, ethanol, and methanol in biological matrices and cell culture. J. Chromatogr. Sci. 41, 272–278 (2009)

    Google Scholar 

  61. Olsson, L., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312–331 (1996)

    Article  Google Scholar 

  62. Poddar, K., Mandal, L., Banerjee, G.C.: Studies on water hyacinth (Eichhornia crassipes) chemical composition of the plant and water from different habitats. Indian Vet. J. 68(9), 833–837 (1991)

    Google Scholar 

  63. Abdelhamid, A.M., Gabr, A.A.: Evaluation of water hyacinth as feed for reminants. Arch. Anim. Nutr. 41(7/8), 745–756 (1991)

    Google Scholar 

  64. Chanakya, H.N., Borgaonkar, S., Meena, G., Jagadish, K.S.: Solidphase biogas production with garbage or water hyacinth. Bioresour. Technol. 46(3), 227–231 (1996)

    Article  Google Scholar 

  65. Mukherjee, R., Nandi, B.: Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus sp. Int. Biodeterior. Biodegrad. 53(1), 7–12 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to Dr. Paul Dinakaran, Chancellor, Dr. S. Sundar Manoharan Ph.D, Vice-Chancellor and Dr. C. Joseph Kennady, Registrar, Dr. J. Jannet venila, Director, School of Biotechnology and Health Sciences, Karunya University, Coimbatore for providing necessary facilities to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Narendhirakannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, A., Narendhirakannan, R.T. Bioethanol Production From Aquatic Weed Water Hyacinth (Eichhornia crassipes) by Yeast Fermentation. Waste Biomass Valor 6, 209–216 (2015). https://doi.org/10.1007/s12649-015-9347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9347-6

Keywords

Navigation